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ABSTRACT 

Two methods of estimating the attitude position of a spacecraft are examined in this 

thesis: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF).  In 

particular, the UnScented QUaternion Estimator (USQUE) derived from [4] is 

implemented into a spacecraft model.  For generalizations about the each of the filters, a 

simple problem is initially solved.  These solutions display typical characteristics of each 

filter type.  The UKF is very attractive in spacecraft attitude estimation, given that 

spacecraft dynamics are highly nonlinear.  For nonlinear systems, the UKF is of 

particular interest because it uses a carefully selected set of sample points that more 

accurately map the probability distribution than the linearization of the standard extended 

Kalman filter.  This leads to faster convergence of the attitude solution from largely 

inaccurate initial conditions.  The filter created in this thesis is formulated based on 

Markley and Crassidis’s work on standard attitude-vector measurements using a gyro-

based model for attitude propagation.  From the standard attitude vector measurements, 

the global attitude parameterization is found and given by a quaternion, while a 

generalized three-dimensional attitude representation is used to define the local attitude 

error.  The multiplicative quaternion-error is then found from the local error.  The 

simulation results indicate that the unscented filter is more robust than the extended 

Kalman filter. 
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I. INTRODUCTION 

A. BACKGROUND 

In August of 1960, the United States Air Force and the Central Intelligence 

Agency successfully launched the world’s first reconnaissance satellite, Corona.  The 

imaging resolution was 8 meters and taken on film.  The program lasted for 12 years, and 

ushered in the era of space-based reconnaissance and intelligence gathering that would be 

iconic of the Cold War.  Since the beginning of spacecraft building, organizations have 

prized themselves on pushing the envelopes of technology.  Programs such as NASA’s 

Explorer, TIROS, and Pioneer later proved that the U.S. was investing heavily on space 

technologies.  

I 

 

 

Figure 1. Dr. William Pickering, Dr. James Van Allen, and Dr. Wernher Von Braun 
hold a model of the Explorer 1 vehicle above their heads.  Credit: NASA 

Historically, the building of spacecraft has been a lengthy process, often taking 

many years or even decades.  Recently, however, a new methodology for building 

spacecraft has transpired.  Organizations such as The Office of Responsive Space (ORS) 



 2

have been created to change this expensive and lengthy process into one that focuses on 

providing a "good enough" service in a timely manner [1].  This push for faster programs 

has also led areas of the industry to build smaller systems in attempts to utilize the 

leftover-over payload mass of launch vehicles.  This is more commonly referred to as a 

"secondary payload."  The industry push combined with the emerging university 

nanosatellite community has created an influx of new commercialism for space-based 

hardware.   

One of the limiting technologies in the small spacecraft arena is attitude 

determination and control systems (ADCS).  While currently there is an increased interest 

in this area, a limited number of complete solutions in a 3U or 1U-class nanosatellite 

have been demonstrated on-orbit.  Many proposed solutions are also not affordable to this 

community.  While companies like Boeing, Honeywell, and Sinclair are working on 

hardware solutions, the problem of attitude determination and control can be attacked 

from both sides.  That is to say, as the hardware is being developed, both academic and 

commercial institutions can focus their resources on the optimal estimation and control 

theory problems.  The lack of an affordable hardware should not inhibit willing parties to 

develop solutions and methods for the small spacecraft ADCS problem.   

B. SHORT OVERVIEW OF ATTITUDE ESTIMATION 

One of the most common estimation techniques that has been widely used for 

various dynamics systems is the Kalman filter.  While the filter was initially designed for 

linear systems, variations of this filter have been developed in particular for nonlinear 

systems.  The extended Kalman filter can be used on nonlinear systems and is based on 

linearizing the system dynamics.  While this is potentially attractive for the nonlinear 

spacecraft attitude control problem there are several associated with the nonlinearization 

[2].  

While the EKF has proven to be a popular tool for nonlinear estimation, it 

continues to endure some fundamental issues inherent in the linearization process, which 

can be the potential cause of divergence.  A later development for nonlinear estimation 

was developed by Julier and Uhlmann and is called the “unscented” Kalman filter [3].  
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The UKF is “founded on the intuition that it is easier to approximate a probability 

distribution than it is to approximate an arbitrary nonlinear function or transformation 

[3]."  The UKF successfully avoids the EKF linearization step by introducing a set of 

sample points that capture the higher order statics of the system.  Finally, the UKF 

method has been developed to estimate the quaternions associated with the attitude of a 

spacecraft [4].  The numerical simulations presented in these studies have illustrated the 

superior performance of the UKF in this context. 

The primary goal of this thesis is to develop and verify estimation algorithms and 

simulation code for a spacecraft attitude determination system (ADS). In particular, the 

two estimation methods that are compared for determining the attitude are the extended 

Kalman filter (EKF) and the unscented Kalman filter (UKF).  Each filter is evaluated 

based on error computation time.  The inherent linearity and nonlinearity of each type of 

filter is examined by choosing related problems that highlight issues in trying to use a 

linear filter (EKF) to solve a nonlinear problem.  To do this, two separate simulations 

codes were designed. These simulation codes include an accurate spacecraft model where 

torque disturbances, Earth physics, and orbital mechanics are accounted for, as well as 

sensor models of an inertial measurement unit and magnetometer. 

A simplified problem was used to verify the behavior of both estimation methods 

on linear and nonlinear dynamics.  For this, the simple pendulum was used as a way to 

show how each filter can be used to estimate the states of a given dynamic problem.  

After this problem was worked, these filters were used as analogs against a simulated 

spacecraft model.  Primarily focusing on the UKF, this thesis discusses the differences 

between the two filters and focuses on the benefits of using nonlinear estimation.  It is 

widely known that there are many benefits to nonlinear estimation.  The UKF is very 

attractive in spacecraft attitude estimation, given that spacecraft dynamics are highly 

nonlinear.  This thesis highlights these benefits while solving both the EKF and UKF 

spacecraft attitude estimation problem.  While previous theses discussed the nuances of 

characterizing these types of sensors for inclusion in the simulation [4], this paper will 

focus on the estimation methods as they apply to attitude determination. 
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C. RECENT CUBESAT ADCS SYSTEMS 

Several spacecraft that have implemented ADCS systems into the small CubeSat 

standard.  This section discusses three of these, which include the following: 

• Canadian Advanced Nanospace eXperiment (CanX) –The University of 

Toronto Institute for Aerospace Studies Space Flight Laboratory (UTIAS 

SLF) 

• AISSat-1 – The University of Toronto Institute for Aerospace Studies 

Space Flight Laboratory (UTIAS SLF) 

• Radio Aurora eXperiment (RAX) – The University of Michigan 

1. Canadian Advanced Nanospace eXperiment (CanX) ADS 

The Canadian Advanced Nanospace eXperiment (CanX) program is run by the 

University of Toronto Institute for Aerospace Studies (UTIAS) Space Flight Laboratory.  

CanX-1 launched on June 2003 from Plesetsk, Russia, and was a 1-U CubeSat that 

consisted of several ADS hardware components.  The primary mission of CanX-1 was to 

demonstrate the several experimental ADS components.  The CanX-1 ADS package 

consisted of a CMOS Imager for ground-controlled horizon sensing and star tracking, 

active three-axis magnetic stabilization and a Global Positioning System (GPS) receiver 

that was modified to work in low Earth orbit.  Figure 2 shows a picture of the CanX 

CMOS imager used for star tracking [6]. 
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Figure 2. CanX-1 Agilent Technologies CMOS Imager 

 CanX-2, which launched in April 2008, uses many of the same types of ADS 

systems.  The CanX-2 ADS uses a suite of sun sensors and a three-axis magnetometer.  

Both CanX-1 and CanX-2 use a standard extended Kalman filter to estimate the attitude 

of the spacecraft. 

 

Figure 3. Computer Rendering of CanX-2 
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2. AISSat-1 ADS 

 AISSat-1 is a 6-kg Norwegian nanosatellite, being constructed on behalf of 

government of Norway by UTIAS/SFL, whose primary mission is to investigate the 

feasibility and performance of a spacecraft-based Automatic Identification System (AIS) 

sensor in low-Earth orbit as a means of tracking maritime assets.  AISSat-1 is intended as 

both a research and development platform, and a demonstration mission for a larger 

operational capability.   

 

Figure 4. Computer Rendering of AISSat-1, from [7] 

 

 A full 3-axis attitude determination and control system provides attitude 

stabilization and fine pointing for AISSat-1. The satellite is able to point in either and 

inertial orientations, or an orbit-frame-fixed orientation, including on nadir. Attitude 

sensors consist of six sun sensors, a magnetometer and rate gyros. Three orthogonally 

mounted reaction wheels and three magnetorquer coils controls the actuation of the 

satellite. The magnetorquer is used for de-tumbling and momentum dumping while the 

reaction wheels provide fine attitude pointing capability. The attitude control system is 

able to maintain several degree level pointing accuracy and stability over the course of 

the entire orbit, including eclipse.  For attitude estimation, this spacecraft also 

implemented an extended Kalman filter [7]. 
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3. Radio Aurora Explorer (RAX) ADS 

The Radio Aurora Explorer (RAX) spacecraft, currently being developed by The 

University of Michigan is a 3U CubeSat, which will also implement and attitude 

determination system.  The primary scientific objective of the Radio Aurora Explorer 

(RAX) mission is to understand the microphysics of plasma instabilities that lead to field-

aligned irregularities (FAI) of electron density in the polar lower (80–400 km) 

ionosphere.  For attitude control, an inertial measurement unit in conjunction with sun 

sensors and magnetometers will observe the time it takes the passive magnetic attitude 

control system to de-tumble the spacecraft after deployment.  This system will implement 

a continuous-discrete extended Kalman filter.  They will implement a 13 state filter, 

which will consist of 3 position, 3 velocity, 4 quaternions, and 3 angular rates.  The team 

will implement the QUaternion ESTimator (QUEST) method developed by Shuster and 

Oh  [8]. Literature describes the QUEST method as computationally expensive; however, 

the information will be gathered on orbit and processed on the ground to eliminate 

computational constraints on the filtering process.  Some of the ADS hardware will 

include six 3-axis magnetometers, nine sun sensors and an inertial measurement unit, 

which will consist of a 3-axis gyroscope.  
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II. GENERAL EXTENDED AND UNSCENTED KALMAN 
FILTERING METHODS FOR THE ESTIMATION OF 

DYNAMIC SYSTEMS 

A. BACKGROUND 

Accurate attitude knowledge is essential for many spacecraft missions.  Kalman 

filtering has been widely known since the 1960s as a method for filtering out noise in a 

given measurement.  Theoretically, the Kalman filter is a sequential optimal estimator for 

what is called the linear-quadratic problem, which is the problem of estimating the 

instantaneous "state" of a linear dynamic system including its uncertainty--by using 

measurements linearly related to the state corrupted by white noise [10]. For attitude 

determination, several types of Kalman filters have been developed over the years.  This 

section describes two basic types of Kalman filters, the extended Kalman filter (EKF) and 

the unscented Kalman filter (UKF).  There have been many technical papers written on 

Kalman filtering for state estimation [2][3].  This chapter will start the discussion with 

the continuous-time Kalman filter as a base line.  Several textbooks use a variety of 

nomenclature to describe this estimation process.  As a standard, the following tables 

define the notation used in this thesis.  These tables are also consistent with [9] and [10]. 



 10

 

Table 1. Standard Symbols of Kalman Filtering, from [10] 

Symbols Symbol Definition 

F 
Dynamic coefficient matrix (state matrix) of a continuous linear 

differential equation defining a dynamic system 

G 
Coupling matrix between random process noise and the state of a dynamic 

system 

H 

Measurement sensitivity matrix defining the linear relationship between 

the state of the dynamic system and measurements that can be made, (also 

known as a coefficient matrix [9]) 

K Kalman gain matrix 

P Covariance matrix of state estimation uncertainty 

Q 
Covariance matrix of process noise in the system state dynamics also 

called the process noise covariance 

R 
Covariance matrix of observational (measurement) uncertainty also called 

the measurement noise covariance 

x State vector 

y Vector (or scalar) of measured values. 

Φ  State transition matrix of a discrete dynamic system 
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Table 2. Special State Space Notation, from [10] 

Symbols Symbol Definition 

( )kx i  
The i-th component of the vector x, or the i-th element of the sequence.  The 
sub-index k refers to the sequence of propagation as it occurs in the filtering 
process.  i.e.  k+1 can be referred to as the “update” term that is determined 
from the same term calculated previously.  1( )kx i+ = ( )kx i noise+  

x̂  An estimate of the value of x. 

ˆ kx −  A priori estimate of the kx , conditioned on all prior measurements except 
the one at time kt  

ˆ kx +  A posteriori estimate of the x , conditioned on all available measurements at 
time kt  

y  A measurement of some quantity we can estimate to the state vector from. 

x  Derivative of x with respect to time 

 

The Kalman filter uses a parametric characterization of the probability 

distribution of its estimation errors in determining the optimal filtering gains, and it is the 

probability distribution that can be used for assessing its performance as a function of the 

“design parameters” of an estimation system [10].  Some of these can include: 

• the types of sensors used, 

• the locations and orientations of the various sensor types with respect to 

the system to be estimated, 

• the allowable noise characteristics of the sensors, 

• the data sampling rates for the various sensor types, and most importantly, 

• the level of model simplification to reduce implementation requirements. 
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B. CONTINUOUS-TIME EXTENDED KALMAN FILTER 

For nonlinear systems, such as spacecraft dynamics, the extended Kalman filter 

(EKF) has been previously proposed in literature and used on-board many spacecraft [2].  

In the EKF, the state transition and observation models do not need to be linear functions 

representing the state, granted they are differentiable.  Given that a vast majority of 

nonlinear problems can be described with differentiable nonlinear functions, the 

Continuous-Time EKF can often be used.  The Continuous-Time EKF is very similar to 

the Continuous-Time Linear Kalman filter [9]. The derivation of the Continuous-Time 

EKF starts with the continuous non-linear system model below: 

 

 ( ) ( ( ), ( ), ) ( ) ( )t t t t t t= +x f x u G w  2.1 

 ( ) ( ( ), ) ( )t t t t= +y h x v  2.2 

 

where it is important to note that f(x(t), u(t),t) represents nonlinear continuous function or 

the state transition model, while G(t) and w(t) represent the coupling matrix and 

continuous-time covariance respectively.  For Equation 2.2, ( )ty  represents the measured 

nonlinear observed model using a continuous function h(x(t),t) plus the continuous-time 

covariance, v(t).   

 The inherent linearization process can cause the filter to diverge, as the Gaussian 

input does not necessarily produce a Gaussian output [9]. To continue, we must assume 

that, for our purposes, a linear representation of our non-linear system will suffice.  For 

example, this method can certainly be used for functions where small angle 

approximation is valid.  Examples of the limitations are discussed in detail in Section F.  

For the EKF, we must also assume that the true state of the system is sufficiently close to 

the estimated state.  Therefore, the error dynamics can be reasonably approximated by a 

linearized first order Taylor series expansion.  The first order expansion of ( ( ), ( ), )t t tf x u  

about a nominal state ( )tx  becomes: 
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( )

( ( ), ( ), ) ( ( ), ( ), ) [ ( ) ( )]
t

t t t t t t t t∂
≅ + −

∂ x

ff x u f x u x x
x

 2.3 

 

where ( )tx  is close to ( )tx .  Similarly, the output in Equation 2.3 becomes [9]: 

 

 
( )

( ( ), ) ( ( ), ) [ ( ) ( )]
t

t t t t t t∂
≅ + −

∂ x

hh x h x x x
x

 2.4 

 

Here the EKF solves this problem by calculating the Jacobians of f and h around the 

estimated state, which in turn yields a trajectory model function centered around this 

state.  Figure 5 shows this graphically [11]. 

 

 

Figure 5.   Illustration of Extended Kalman filter linearization of nonlinear function 
and the related Gaussian distribution. 

 To find the estimate of the state, the extended Kalman filter continues with 

assumption made earlier, that ˆ( ) ( )t t=x x .  Thus, the expectation of both Equations 2.3 

and 2.4 gives the following equation, where E represents the conditional mean or 

expectation [9]. 
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 { } ˆ( ( ), ( ), ) ( ( ), ( ), )E t t t t t t=f x u f x u  2.5 

 { } ˆ( ( ), ) ( ( ), )E t t t t=h x h x  2.6 

 

Therefore, the extended Kalman filter for the state and output estimate is given by the 

following two equations [9]. 
 

 [ ]ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ) ( ( ), )t t t t K t t t t= + −x f x u y h x  2.7 

 ˆ ˆ( ) ( ( ), )t t t=y h x  2.8 

 

Because the equation of the measurement of the state vector has the same structure as the 

linear Kalman filter, we can use the covariance expression shown in Table 3.  The 

following table summarizes the equations for the continuous-time extended Kalman 

filter. 
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Table 3. Continuous-Time Extended Kalman Filter, from [9] 

Model 
 

( ) ( ( ), ( ), ) ( ) ( ),
( ) ( ( ), ) ( )

t t t t t t
t t t t

= +
= +

x f x u G w
y h x v

 

Initialize 
 

( )
( ) ( ){ }

0 0

0 0 0

ˆ ˆ
T

t

P E t t

=

=

x x

x x
 

Gain  1ˆ( ) ( ) ( ( ), ) ( )TK t P t H t t R t−= x  

Covariance 

( ) ( )

1

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ( ), ) ( ) ( ) ( ( ), )
ˆ( ) ( ( ), ) ( ) ( ( ), ) ( ) ( ) ( ) ( )

ˆ ˆ, , ,

T

T T

t t

P t F t t P t P t F t t
P t H t t R t H t t P t G t Q t G t

F t H t

−

= +

− +

∂ ∂
≡ ≡
∂ ∂x x

x x
x x
f hx x
x x

 

Estimate  [ ]ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ) ( ) ( ( ), )t t t t K t t t t= + −x f x u y h x  

 

C. DISCRETE-TIME LINEAR AND EXTENDED KALMAN FILTERS 

 While understanding the basics of the continuous-time extended Kalman filter is 

valuable in the sense that it can often be used to solve entire solutions analytically, 

implementation of this is not practical.  In most cases, the control system is responding to 

different given inputs.  The use of real-time processing is inevitable in the practical 

implementation of estimating dynamic systems.  Thus, the continuous-time Kalman filter 

must be discretized so that it may be applied to iterative methods.  This section describes 

how the Kalman filter is derived. 

 Derivation of the discrete-time filter and the extended Kalman filter are very 

similar.  To derive the discrete-time Kalman filter, an assumption must be made that both 

the model and measurement are available in discrete form.  Here, we can start with the 

non-linear "truth" model shown below [9]: 
 

 1k k k k k k k+ =Φ +Γ +ϒx x u w  2.9 
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 ( )k k k kH= +y x v  2.10 

where Φ  is the state transition matrix, Γ  is the control-input matrix that is applied to the 

control vector uk, and ϒ is the noise matrix.  The definition of Φ , Γ , and ϒ are shown 

below. 

 F te ΔΦ ≡  2.11 
 

 
0

t Fte dt B
Δ⎡ ⎤Γ ≡ ⎢ ⎥⎣ ⎦∫  2.12 

 

 
0

t Fte dt G
Δ⎡ ⎤ϒ ≡ ⎢ ⎥⎣ ⎦∫  2.13 

 

where B and G are the coefficient matrices taken from the continuous system.  Again, in 

Equations 2.9 and 2.10 wk(t) and vk(t) are assumed to be zero-mean Gaussian white-noise 

processes and their covariance's are given by the expectation equations [9]: 
 

 { } 0T
k j

k

k j
E

Q k j

⎧ ≠⎪= ⎨
=⎪⎩

w w  2.14 

 { } 0T
k j

k

k j
E

R k j

⎧ ≠⎪= ⎨
=⎪⎩

v v  2.15 

 

 The Qk matrix accounts for the state process noise while the Rk matrix accounts 

for the expected measurement noise. These equations imply that the errors are not 

correlated forward or backward in time. We can also assume that vk and wk are 

uncorrelated so: 

 { } 0T
k kE =v w  2.16 

 

Updating the current estimate of the state ˆkx  to obtain 1ˆkx +  based upon all k+1 

measurement subsets assumes that the gain (K)  can vary in time.  This propagation can 

be done using [9]:  
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 1ˆ ˆk k k k k
− +
+ = Φ +Γx x u  2.17 

 

Furthermore, the updated state is given by: 

 

 ˆ ˆ ˆk k k k k kK H+ − −⎡ ⎤= + −⎣ ⎦x x y x  2.18 

 

where ky is the measurement vector.  The gain Kk changes with time properly weighting 

the relative confidence of the accuracy of the propagated state verses the measured state.  

To find Kk, first the state error and error covariance matrixes must be defined [9]: 

 

 { }T
k k kP E − −≡ x x  2.19 

where 

 ˆk k k
−≡ −x x x  2.20 

 

Substituting Equations 2.9 and 2.17 into Equation 2.20 and substituting the resulting 

equation into Equation 2.19 leads to: 

 

 1
T T

k k k k k k kP P Q− +
+ = Φ Φ + ϒ ϒ  2.21 

 
Because kw  and k

+x  are uncorrelated the terms { } { } 0T T
k k k kE E+ += =w x x w .  To find the 

updated error covariance matrix, we can use Equations 2.10  and 2.18.  Then substitution 

of the resulting equation into Equation 2.20 leads to: 

 

 ( )ˆk k k k kP I K H P+ − −⎡ ⎤= −⎣ ⎦x  2.22 

 

To find the gain K, the trace of error covariance matrix kP+  is minimized.  Solving gives: 

 

 ( ) ( ) ( ) 1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R
−

− − − − −⎡ ⎤= +⎣ ⎦x x x  2.23 
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As mentioned previously, the extended Kalman filter and discrete-time Kalman 

filter are nearly identical.  The only difference between these two are the initial model 

equations and the propagation equations.  The extended Kalman filter assumes that the 

model is a continuous function and thus be differentiable.  This is clearly evident in Table 

4. 

Table 4. Discrete-Time Linear Kalman Filter, from [9] 

Model  ( )
( )

1 , ,

, ,
k k k k k k k k

k k k k k k

N Q

H N R
+ = Φ + Γ + ϒ

= +

x x u w w 0

y x v v 0

∼

∼
 

Initialize  ( )
( ) ( ){ }

0 0

0 0 0

ˆ ˆ
T

t

P E t t

=

=

x x

x x
 

Gain  ( ) ( ) ( ) 1
ˆ ˆ ˆT T

k k k k k k k k k kK P H H P H R
−

− − − − −⎡ ⎤= +⎣ ⎦x x x  

Update  ( )
[ ]

ˆ ˆ ˆk k k k k k

k k k k

K H

P I K H P

+ − −

+ −

⎡ ⎤= + −⎣ ⎦
= −

x x y x  

Propagation  1

1

ˆ ˆk k k k k
T T

k k k k k k kP P Q

− +
+

− +
+

= Φ + Γ

= Φ Φ + ϒ ϒ

x x u  

 

D. UNSCENTED KALMAN FILTER 

The inherent issue with propagating Gaussian random variables through a 

nonlinear function can also be approached using a technique described as the unscented 

transform.  While the extended Kalman filter has many applications, and is the most 

popular method for nonlinear estimation to date, the unscented Kalman filter (UKF) was 

proposed by Julier, Uhlmann, and Durrant-Whyte [12] to overcome the instabilities 

associated with the EKF. While the EKF typically works well in the regions where the 

first-order Taylor series linearization adequately approximates the nonlinear probably 

distribution, a primary area of concern is during the initialization stage, where the 
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estimated initial state can be far from the true state [9].  The UKF typically involves more 

complex computations than the EKF, but has the following advantages: 

1. the expected error is lower than the EKF 

2. it can be applied to non-differentiable function 

3. it avoids the derivation of Jacobian matrices 

4. it is valid to higher-order expansions than the standard EKF [4] 

 The UKF can be thought of as an extension of the traditional Kalman filter for the 

estimation of nonlinear systems that implements the unscented transformation.  The 

unscented transformation uses a set of sample, or sigma, points that are determined from 

the a priori mean and covariance of the state.  The sigma points undergo the nonlinear 

transformation.  Then the a posteriori mean and covariance of the state are determined 

from the transformed sigma points.  This approach gives the UKF better convergence 

characteristics and greater accuracy than the EKF for nonlinear systems [13].  The ability 

of the UKF to accurately estimate nonlinearities make it attractive for implementation on 

spacecraft as the state and observations are inherently nonlinear.  This section describes 

the basic derivation of the unscented Kalman filter, while the subsequent sections 

describe the implementation of the UKF for attitude determination.   

 The derivation of the unscented Kalman filter starts by selecting a nonlinear 

system defined by [9]: 

 1 ( , )k k k kk G+ = +x f x w  2.24 

 ( , )k k kk= +y h x v  2.25 

 

where xk is  the n ×  1 state vector and yk is the m ×  1 measurement vector.  It is 

interesting to note that a continuous-time model can also be expressed in the form of 

Equation 2.24.  Similar to the previous derivations, vk represents the measurement-error 

noise while wk describes the white Gaussian process noise with covariances given by  

 { }( ) ( ) ( ) ( )TE t Q t tτ δ τ= −w w  2.26 
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 { }( ) ( ) ( ) ( )TE t R t tτ δ τ= −w v  2.27 
 
 { }( ) ( ) 0TE t τ =v w  2.28 

 

The covariance matrices of each of these are given by Qk and Rk respectively [4].  The 

Kalman filter update equations are rewritten from Table 4 as [3]: 

 
 ˆ ˆk k k kK υ+ −= +x x  2.29 
 T

k k k k kP P K P Kυυ+ −= −  2.30 

 

where kυ  is the innovations process, given by  

 
 ˆ ˆ( , )k k k k k k kυ − −≡ − = −y y y h x u  2.31 

 

The covariance of the innovations process, kυ  is given by kPυυ [4].  

 
 1 1 1

yy
k k kP P Rυυ
+ + += +  2.32 

 

The Kalman gain is computed by the following equation [4]. 

 

 -1( )xy
k k kK P Pυυ=  2.33 

 

where xy
kP is the cross-correlation matrix between ˆ k

−x , and ˆ k
−y .  The cross-correlation is 

defined later in the discussion below.  To define the propagation equations, the following 

sigma points must be computed [4].  The filter starts by augmenting the state vector to L 

dimensions in the original state-vector, model noise, and measurement noise where L is 

the size of the vector a
kx , or the augmented state defined by Equation 2.37 [9].  The 

covariance matrix is similarly augmented and this forms the augmented state estimate 

vector shown below. 

 



 21

 
 2 a

kL columns from Pσ γ← ±  2.34 
 
 ˆ(0)a a

k kχ = x  2.35 
 
 ˆ( ) ( )a a

k k ki iχ σ= + x  2.36 
 

where ˆ a
kx  is an augmented state defined by [4] 

 

 1

1

ˆ
ˆ, 0

0

k k
a a
k k k q

k m

x x
w
v

×

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x x  2.37 

 

Augmenting the covariance requires the computation of 2(q+l) additional sigma points.  

It is important to mention here that q is the dimension of kw , l is the dimension of kv , 

and m is the output dimension.  While L is the size of the vector ˆ a
kx , the parameter γ is 

given by the following [4]. 

 

 Lγ λ= +  2.38 

 

and the composite scaling parameter , λ , is given by 

 

 2( )L Lλ α κ= + −  2.39 

 

The constant α, represents the spread of sigma points and is usually set to a small positive 

value (e.g., 41 10 1α−× ≤ ≤ ).  There are 2L values for kσ , each representing the 

positive and negative values of the square root.  The Cholesky method is often used to 

find the square root of a matrix.  Similar to the EKF, the UKF now propagates these 

sigma-points from a Gaussian distribution through a nonlinear function, and recreates a 

Gaussian distribution by calculating the mean and covariance of these results [11]. 
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Figure 6. Illustration of the unscented Kalman filter sigma-points propagation 

 

These sigma points are evaluated by: 

 

 1( ) ( ( ), ( ), , )x w
k k k ki i i kχ χ χ+ = f u  2.40 

 

where ( )x
k iχ is a vector of the first n elements of ( )a

k iχ , and ( )w
k iχ is a vector of the next q 

elements of ( )a
k iχ , with 

 
( )
( )
( )

x
k

a w
k k

k

i
i
iυ

χ
χ χ

χ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 2.41 

 

The predicted mean for the state estimate is calculated using a weighted sum of points 

1( )x
k iχ + , given by: 

 

 

2

1 1
0

ˆ ( )
L

mean x
k i k

i
W iχ−

+ +
=

=∑x  2.42 

 

where the weight terms mean
iW  is given by: 
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 0
meanW

L
λ
λ

=
+

 2.43 

and 

 cov , 1,2, ,2
2( )

mean
i iW W i L

L
λ
λ

= = =
+

…  2.44 

 

Similarly, the predicted covariance term is given by:  

 

 
2

1 1 1 1 1
0

ˆ ˆ( ) ( )
L Tconv x x

k i k k k k
i

P W i iχ χ− − −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ x x  2.45 

 

where the weight terms are given by 2.44, and the following equation. 

 

 cov 2
0 (1 )W

L
λ α β
λ

= + − +
+

 2.46 

 
The mean observation is given by 
 

 
2

1 1
0

ˆ ( )
L

mean
k i k

i
W iγ−

+ +
=

=∑y  2.47 

where  

 
 ( )1 1 1 1( ) ( ), , ( ), 1x

k k k ki i i kυχ χ+ + + += +γ h u  2.48 
 

The output covariance matrix is given by: 

 

 
2

1 1 1 1 1
0

ˆ ˆ( ) ( )
L Tyy conv

k i k k k k
i

P W i iγ γ− −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ y y  2.49 

The innovations covariance is given by Equation 2.32.  The cross correlation matrix is 

finally described as 

 

 
2

1 1 1 1 1
0

ˆ ˆ( ) ( )
L Txy conv x

k i k k k k
i

P W i iχ γ− −
+ + + + +

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑ x y  2.50 
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Finally, the Kalman gain and states are updated using the following equations. 

 

 -1( )xy
k k kK P Pυυ=  2.51 

 

 ˆ ˆk k k kK υ+ −= +x x  2.52 

 

 T
k k k k kP P K P Kυυ+ −= −  2.53 

 

 ˆ ˆ( , )k k k k k kkυ − −≡ − = −y y y h x u  2.54 

 

A summary of these equations are listed in Table 5 and will be referred to in subsequent 

sections that describe the implementation of these filters. 



 25

 

Table 5. Unscented Kalman Filter, from [9] 

Model 
 1 ( , , , )

( , , , )
k k k k

k k k k

k
k

+ =

=

x f x w u
y h x u v

 

Initialize 
 ( ) ( )

( )
0 0 0 0

0 0

ˆ ˆ ,k k

P k P

β β= =

=

q q
 

Gain  -1( )xy
k k kK P Pυυ=  

Update 
 

ˆ ˆ

ˆ ˆ( , )

k k k k

T
k k k k k

k k k k k k

K

P P K P K

k

υυ

υ

υ

+ −

+ −

− −

= +

= −

≡ − = −

x x

y y y h x u

 

Propagation 2

1 1
0

2

1 1 1 1 1
0

2

1 1
0

2

1 1 1 1 1
0

1 1

2

1
0

ˆ ( )

ˆ ˆ( ) ( )

ˆ ( )

ˆ ˆ( ) ( )

L
mean x

k i k
i

L Tconv x x
k i k k k k

i
L

mean
k i k

i

L Tyy conv
k i k k k k

i

yy
k k

L
xy conv

k i k
i

W i

P W i i

W i

P W i i

P P

P W

υυ

χ

χ χ

γ

γ γ

χ

−
+ +

=

− − −
+ + + + +

=

−
+ +

=

− −
+ + + + +

=

+ +

+
=

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

=

⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦

=

=

∑

∑

∑

∑

∑

x

x x

y

y y

1 1 1 1ˆ ˆ( ) ( )
Tx

k k ki iγ− −
+ + + +⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦x y

 

 

E. IMPLEMENTATION OF EKF AND UKF METHODS USING THE 
SIMPLE PENDULUM PROBLEM 

Prior to implementing the EKF and UKF on the spacecraft model, an easier 

problem was solved.  For this, the simple pendulum was used.  Figure 7 shows a diagram 

of the simple pendulum problem. 
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Figure 7. Simple Pendulum Problem 

The dynamic equation is commonly known and listed below. 

 

 2

sin( )

y

mgl
I ml

θθ −
=

+
 2.55 

 

Translated into the state space model, this becomes: 

 

 
1

2

3y

x
x x

I x

θ
θ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎩ ⎭

 2.56 

 

 1
2

3

2 2
sin( )

3

4 0

mgl x
x ml

y

x x
x x

I x

θ
θ −

+

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭⎩ ⎭ ⎩ ⎭

 2.57 

 

P 

mg sinθ 

θ 
L 

m 

mg cosθ 

mg 
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We can now implement the state-space model into the simulation block diagram as our 

dynamics state function.  The three states that were estimated were θ , θ , and yI . 
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Figure 8. Simulink Block Diagram of Simple Pendulum Model 

By solving Equation 2.57, we can then use its solution to determine our 

measurement equation. 

 

 0 sin( )measy B θ α= +  2.58 
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where measy  represents the “measured” angle θ  and α  represents some initial angular 

quantity.  The measured values are then perturbed by white Gaussian random numbers to 

simulating sensor noise and are subsequently fed into both the EKF and UKF.  Appendix 

A – Simple Pendulum Simulation, shows the details of the simulation, including the 

simulation blocks, and associated Matlab code. 

F. EKF AND UKF ESTIMATION RESULTS USING THE SIMPLE 
PENDULUM PROBLEM 

The results of this estimation problem show how the EKF does not estimate 

accurately for nonlinear problems.  For the first simulation the pendulum was set to θ = 

30°, θ = 0°/sec, and Iy = 5 kg m2.  Figure 9 shows the 3σ plot for the angle error between 

the estimated values and the true value.  The 3σ plot is typically used to the confidence 

interval of a given set of data.  While the term “3σ” actually refers to three times the 

variance of the data distribution, mathematically 3σ can be translated to mean that our 

data falls within approximately 99.73% of the symmetric confidence interval (CI).  

Conversely, this means that approximately 0.27% of the data falls outside the CI.  The 

calculation for 3σ is shown below where the variance of diagonal values of the 

covariance matrix Pxx are used for n number of states. 

 

 

1,1 1,2 1,

2,1 2,2 2,
1

,1 ,2 ,

n

nxx
k

n n n n

c c c
c c c

P

c c c

+

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 2.59 

 

 ( ) ( ), 1,2,...,i k ii kt c t i nσ = ± =  2.60 

 

Here we can see that the EKF cannot accurately estimate the state due to the 

nonlinearity of the system.  As the pendulum swings and the angle increases, the  
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nonlinearity of the dynamics increase and thus the filter becomes inaccurate.  Conversely, 

we see in Figure 10 that the UKF accurately estimates the state well between the 3σ 

bounds. 
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Figure 9. Angular Errors in EKF with 3σ Error Bounds Simulation 1 (large θ) 
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Figure 10. Angular Errors in UKF with 3σ Error Bounds Simulation 1 (large θ) 

Figure 11 shows similar results for the estimation of the angular velocity ω.   
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Figure 11. Angular Rate Errors in EKF with 3σ Error Bounds Simulation 1 (large θ) 
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Figure 12. Angular Rate Errors in UKF with 3σ Error Bounds Simulation 1 (large θ) 

Furthermore, we can see that the estimation for the moment of inertia, Iy, is accurate for 

both EKF and UKF.  We can conclude that this is largely because Iy is a constant 

quantity. 
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Figure 13. Moment of Inertia Errors in EKF with 3σ Error Bounds Simulation 1 
(large θ) 
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Figure 14. Moment of Inertia Errors in UKF with 3σ Error Bounds Simulation 1 
(large θ) 



 33

These plots clearly show how the UKF provides a more accurate solution for even 

simple nonlinear problems.  To further verify this, a second simulation was performed 

using smaller initial conditions.  Using 21 , 0, 5yand I kg mθ θ= = = , we can see the 

both filters estimate well within the 3σ bounds.  This can directly be associated with the 

small angle approximation where sinθ θ≅  for sufficiently small angles.  These plots are 

shown below. 
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Figure 15. Angular Errors in EKF with 3σ Error Bounds for Simulation 2 (small θ) 
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Figure 16. Angular Errors in UKF with 3σ Error Bounds for Simulation 2 (small θ) 

Similarly, as shown below, we can see that the angular rates also fall within the 

bounds.   
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Figure 17. Angular Rate Errors in EKF with 3σ Error Bounds for Simulation 2 

(small θ) 
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Figure 18. Angular Rate Errors in UKF with 3σ Error Bounds for Simulation 2 

(small θ) 

We can also see that the both moments of inertia also converge the proper values. 
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Figure 19. Moment of Inertia Errors in EKF with 3σ Error Bounds for Simulation 2 
(small θ) 
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Figure 20. Moment of Inertia Errors in UKF with 3σ Error Bounds for Simulation 2 
(small θ) 
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III. IMPLEMENTATION OF EKF AND UKF FOR SPACECRAFT 
ATTITUDE DETERMINATION 

A. GENERALIZATIONS 

While Chapter II discusses the fundamentals of both EKF and UKF, this chapter 

describes the implementation of both methods for attitude determination.  In order to 

perform Kalman filtering for attitude estimation we must first examine the nature of 

quaternion estimation.  The following discusses the analytical modeling setup, basic 

quaternion attitude kinematics, and finally, the implementation of both EKF and UKF 

filters for spacecraft attitude estimation.  

B. ANALYTICAL MODELING AND SETUP FOR ATTITUDE 
DETERMINATION SIMULATIONS 

1. Background 

To implement the Kalman filters, a spacecraft simulation was created in 

MATLAB Simulink.  Much of the initial foundation for this simulation was built 

previously, and is documented in [14] and [4].  For a better understanding of how the 

simulation works, the following sections will briefly discuss the several of the general 

Simulink Blocks.  For our purposes, we will define the general simulation blocks as the 

following 

• Orbit Propagator 

• Environmental Effects 

• Dynamics and Kinematics 

• Disturbance Torques 

• Sensors and Noise Modeling 

Particularly, the blocks that will be discussed are Spacecraft Kinematics, Attitude 

Disturbance Torques, and Spacecraft Sensor/Noise Modeling.  These blocks, and the 

entire simulation are shown in Appendix B – Spacecraft Attitude Determination 

Simulation. 
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2. Dynamics and Kinematics 

Shown in Figure 21, the Dynamics block calculates the spacecraft angular body 

rates along each body axis by integrating applied forces, including control torques, based 

on Euler’s equations [15].  
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Figure 21. Attitude Dynamics and Kinematics Simulink Block 

 
The Euler equations are listed below [15].  
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T J J
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ω

ω ω
ω

ω ω
ω

− −
=

− −
=

− −
=

 2.61 

 

These angular rates were then integrated in to the Kinematics block to determine 

the spacecraft orientation.  For these simulations, the orientation is described in 

quaternions.  The quaternion kinematic differential equation is: 
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 2.62 

 

3. Spacecraft Attitude Disturbance Torques 

Three major torque disturbances were taken into consideration for this simulation, 

gravity gradient, aerodynamic torque, and solar torque.   For gravity gradient torque, the 

following equations were used. 

 

 

( )
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2 3

1 33
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 2.63 

where 
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BO

c
c C
c

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 2.64 

  

The aerodynamic torque was calculated using the simple drag equation.   

 

 21
2aero DF V C Aρ=  2.65 

 

Here we should note that the velocity was determined from the orbit parameters, the 

coefficient of drag (CD) was assumed to be 2, and effective area (A) was determined 

using spacecraft component areas and centers of pressure.  Finally, solar torque was 

determined using a Simulink block diagram shown in Appendix B. 
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4. Spacecraft Sensor and Noise Modeling 

All of sensor modeling done for this simulation was completed in Reference [4], 

where the author accurately modeled sensor sampling rates and noise sources based on 

manufacturer specifications.  We can see this in the “Sensors Block” of the simulation.  

The most important information from the previous work is shown in Table 6, which 

shows the example of noise coefficients for the gyro.  These numbers are implemented 

into the spacecraft simulation gyro random noise modeler. 

 

Table 6. Summary of Gyro Noise Coefficients, from [4] 

 2
vE η⎡ ⎤⎣ ⎦  (°/√sec) 2

uE η⎡ ⎤⎣ ⎦  (°/√sec3) 

Gyro Data 1 7.840e-04 1.440e-07 

Gyro Data 2 7.840e-04 3.240e-08 

Gyro Data 3 7.840e-04 3.240e-08 

 

The equation for modeling the internal measurement unit (IMU) is listed below. 

 

 ( ) ( ) ( ) ( )vt t t tω ω β η= + +  2.66 
 ( ) ( )ut tβ η=  2.67 

 

where ( )tω  is the continuous-time measured angular rate, and ( )v tη  and ( )u tη  are 

independent zero-mean Gaussian white-noise processes. 
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C. ATTITUDE KINEMATICS FOR QUATERNION ESTIMATION 

This section describes the Kalman filter as it applies to attitude estimation.  It is 

important to note that the equations found in this section apply to both the extended and 

the unscented Kalman filters.   

The quaternion is defined in Equations 2.68, 2.69, and 2.70. 

 4

TT q⎡ ⎤≡ ⎣ ⎦q ς  2.68
 

 [ ]1 2 3 2ˆsin( )Tq q q e θ≡ ≡ς  2.69 

 
 4 2cos( )q θ=  2.70 
 

where q is the quaternion, ê  is the Euler’s axis, θ is the Euler’s angle, and the quaternion 

follows the normalization of qTq = 1.  The attitude matrix can be related to the quaternion 

by the equation below [2]. 

 ( )A =Ξ ΨTq (q) (q)  2.71 

 

where ( )TΞ q  and ( )TΨ q  are defined by Equations 2.72 and 2.73. 

 

 [ ]4 3 3( )T
T

q I ×⎡ ⎤+ ×
Ξ ≡ ⎢ ⎥−⎣ ⎦

ς
q

ς
 2.72 

 [ ]4 3 3( )T
T

q I ×⎡ ⎤− ×
Ψ ≡ ⎢ ⎥−⎣ ⎦

ς
q

ς
 2.73 

 

Here 3 3I ×
 is a 3 3× identity matrix and [ ]×ς is the cross product matrix described below. 
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 [ ]
3 2

3 1

2 1

0
0

0

q q
q q
q q

−⎡ ⎤
⎢ ⎥× ≡ −⎢ ⎥
⎢ ⎥−⎣ ⎦

ς  2.74 

 

Notably, the quaternion error cannot accurately found by subtraction, as the result would 

not satisfy the unit norm constraint, and a renormalization would be needed.  The 

multiplicative error is defined as [16]: 

 1ˆδ −= ⊗q q q  2.75 

 

Here we use the symbol ⊗  to indicate the quaternion multiplication [2]. This relationship 

is described in Equation 2.76. 

 

 ( ' ) ( ) ( ' )A A A= ⊗q q q q  2.76 

 

For implementation, the function XI was used in Matlab.  This can be seen in Appendix 

A – Matlab Code and Simulink Diagrams.  The time derivative of the quaternion error 

becomes 

 
 1 1ˆ ˆδ − −= ⊗ + ⊗q q q q q  2.77 

 

As derived in [16], the estimated quaternion kinematics equation is given by 

 

 [ ]1
2( ) ( ) ( )t t t= Ξq q ω  2.78 

 

Where ( )tω  is the 3 1×  angular velocity vector.   The local error-quaternion, 

4

T
Tq qδ δς δ⎡ ⎤≡ ⎣ ⎦

, can now be used to find the generalized Rodriguez parameter which will 

be useful later in the implementation of the UKF [4].  
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4

f
a q
δδ
δ

≡
+
ςp  2.79 

 

where a  is a parameter from 0 to 1, and f  is a scale factor.  Suggested values for, f, is 

2(a+1) so that δp  is equal to ϑ  for small errors, where ϑ  is the angle of rotation [4].  

In the simulations presented in the thesis a  was set to 1 to reproduce the results shown in 

[4].  While the propagation of the state and covariance can be accomplished by using 

numerical integration techniques, the measurement observations are typically sampled at 

higher rates than they are updated.  This proves useful, as we can use a discretized 

version of the propagation equations.  Using the power series, we can derive the new 

discretized propagation equation from 2.78  [9]. 
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( )
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( )

2 2 1

ˆ
2

0

1 1ˆ ˆ
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2 ! 2 1 !

k k

t

k

t t
e

k k

ω ω ω
+

Ω ∞

=

⎧ ⎫⎡ ⎤ ⎡ ⎤Ω Ω⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦= +⎨ ⎬+⎪ ⎪
⎪ ⎪⎩ ⎭

∑  2.80 

 

Using the identities described in Equations 2.81 and 2.82, we can substitute them into 

Equation 2.80. 

 ( ) ( ) 22
4 4ˆ ˆ1 kkk

xIω ωΩ = −  2.81 
 
 ( ) ( ) ( )22 1 ˆ ˆ ˆ1 kkk ω ω ω+Ω = − Ω  2.82 
 

 
( ) ( )

( ) ( )
( )

( )

2 2 1

ˆ
12

4 4
0 0

1 1ˆ ˆ1 1
2 2ˆ ˆ
2 ! 2 1 !

k k
k k

t

x
k k

t t
e I

k k

ω ω ω
ω ω

+

Ω ∞ ∞
−

= =

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= + Ω
+∑ ∑  2.83 

 

This equation then simplifies using trigonometric identities to the following 
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( )

( )
ˆ

2
4 4

1 ˆsin
1 2ˆ ˆcos

ˆ2

t

x

t
e I t

ω ω
ω ω

ω

Ω
⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= +Ω⎜ ⎟

⎝ ⎠
 2.84 

 

Finally, the quaternion propagation is found to be [9]: 

 

 ( )1ˆ ˆ ˆk k kω− + +
+ = Ωq q  2.85 

 

Where ˆkω
+  and ˆ k

+q  are the post-update estimates and ( )ˆkω
+Ω  are given by Equations 2.86 

and 2.87. 

 

 ( )
3 3

1 ˆ ˆˆcos
2ˆ

1ˆ ˆcos
2

x k k k

k
T

k k

I t

t

ω
ω

ω

+ + +

+

+ +

⎡ ⎤⎛ ⎞ ⎡ ⎤Δ − Ψ × Ψ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎢ ⎥≡
⎢ ⎥⎛ ⎞−Ψ Δ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

Ω  2.86 

 

 

1 ˆ ˆsin
2ˆ

ˆ

k k

k
k

t+ +

+
+

⎛ ⎞Δ⎜ ⎟
⎝ ⎠Ψ ≡

ω ω

ω
 2.87 

 

For both the EKF and the UKF, we will use a rate gyro and a magnetometer.  Given a 

post-update estimate for the bias k̂β
+ , we will use the following equation to find the post-

update angular velocity and propagated bias. 

 

 
1

ˆˆ
ˆ ˆ

k k k

k k

ω ω β

β β

+ +

− +
+

= −

=
 2.88 
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We will use these equations in both the EKF and UKF to solve the attitude determination 

problem in the following sections.  

D. CRASSIDIS AND MARKLEY’S UNSCENTED QUATERNION 
ESTIMATOR (USQUE) 

 In this section, the unscented Kalman filter described in Crassidis and Markley’s 

paper on spacecraft attitude estimation, Reference [4], is implemented.  This filter is 

called the UnScented QUaternion Estimator (USQUE).  More specifically, the following 

describes how the USQUE is implemented in spacecraft attitude-determination 

simulations using MATLAB.   

 First, however, we must take step back and look at implementation of the UKF 

process as a sequential series of steps.  Figure 22 shows the UKF graphically in the form 

of a flow chart.  Similarly, we will refer to this flow chart throughout this section as it 

follows Crassidis and Markley’s USQUE closely.  The Matlab Code generated for this 

simulation also follows this flowchart and is listed in Appendix A. 
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Figure 22. Unscented Quaternion Estimator Flow Chart
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To begin, Figure 23 shows the UKF block of the attitude determination simulation 

shown in Appendix A.   

Table 7 describes the inputs and outputs of this block.   

[w_BNf_u]

[bias_f_u]

[q_BNf_u]

[Pnorm_u]

[Pdiag_u]

w_BN

Bm

b

w_BNf _u

q_BNf _u

bias_f _u

Pdiag_u

Pnorm_u

Unscented Kalman Filter

[w_BNm]

[b]

[Bm]

 

Figure 23. Unscented Kalman Filter Block - Level 1 

Table 7. Description of Inputs and Outputs for UKF Block - Level 1
 

Input Output 

Variable Name Description Variable Name Description 

w_BNm, ( kω )
 

Sensor measured angular 

rate (from gyro) 
w_BNf_u, (ω̂ ) Estimated angular 

rate 

Bm, ( kβ ) 
Sensor measured magnetic 

field (from magnetometer) 
q_BNf_u, ( q̂ ) Estimated quaternion 

b, ( ˆ
kβ ) 

Estimated magnetic field 

from environment model. 
bias_f_u Estimated 

magnetometer bias 

  
Pdiag_u Diagonal terms of the 

covariance matrix 

  Pnorm_u Norm of the 

covariance matrix 
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 As Figure 23 shows the top level of the UKF, Figure 24 shows the Level 2 block 

showing a few more inputs.  These will be discussed further in the section.  As a side 

note, the following sections are also well documented in the embedded Matlab code 

associated with this Simulink block.  This code can be found in Appendix B. 

5
Pnorm_u

4
Pdiag_u

3
bias_f_u

2
q_BNf_u

1
w_BNf_u

MATLAB
Function

norm

MATLAB
Function

diag

wk1t

q_init

Bk1

B

dt

sig

lambda

a

wk1

qk1

biask1

Pxx_k1

UKF

0

-3

sig

t_ekf

[0,0,0,1]'

 

3
b

2
Bm

1
w_BN

 

Figure 24. Unscented Kalman Filter Block - Level 2
 

1. Initialization 

 Referring to Figure 22, we can see that the USQUE process begins with the 

initialization portion of the estimation.  Here we must choose the initial values for our 

states, which include the quaternion and the bias.  For the initial simulations, the initial 

quaternion was set to [0,0,0,1] and the bias to [0,0,0].  For later simulations, as discussed 

in the results section, initial conditions were changed to highlight major differences 

between the UKF and EKF. 

2. Calculation of Sigma Points 

Calculations of Sigma Points begin with defining the following state vector: 
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ˆ

ˆ(0) ˆ
k

k k
k

x
δ

χ
β

+
+

+

⎡ ⎤
= ≡ ⎢ ⎥

⎢ ⎥⎣ ⎦

p
 2.89 

 

Here we can use Equation 2.79 for ˆ kδ +p , which is the 4 x 1 error quaternion, and the 3 

state bias term, k̂β
+ .  These values will be propagated and used to update the final nominal 

state.  This resulting covariance matrix is a 6 x 6.  It is important to note here that for 

propagating these values forward we can now use Equations 2.42 through 2.50.  

However, before we use these equations, we must partition the sigma points ( )k iχ  so that 

we can work only with the quaternion portion.   

 

 ( )
( ) 0,1, ,12

( )

p
k

k
k

i
i i

i

δ

β

⎡ ⎤
≡ =⎢ ⎥
⎣ ⎦

χ
χ

χ
…  2.90 

 

where p
k
δχ is the attitude error part, and ( )k iβχ  is the gyro bias part.  Now that we have 

parsed out these terms, we must determine the new quaternion generated by multiplying 

the error quaternion by its current estimate.   

 

 ˆ ˆ(0)k k
+ +=q q  2.91 

 

 ˆ ˆ ˆ( ) ( ) 1,2, ,12k k ki i iδ+ + += ⊗ =q q q …  2.92 

 

where ˆ k
+q  is the current quaternion estimate, and ˆ kδ +q is the error quaternion.  The error 

quaternion is broken up into the 3 state quaternion vector kδ +ς , and the forth 

quaternion, 4k
qδ + , shown in Equations 2.93, 2.94, and 2.95. 

 

 4ˆ ( ) ( ) ( ) , 1,2,...,12
k

T
T

k ki i q i iδ δ δ+ + +⎡ ⎤≡ =⎣ ⎦q ς  2.93 
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2 22 2

4 22

( ) (1 ) ( )
( ) , 1,2,...,12

( )k

k k

k

a i f f a i
q i i

f i
δ +

− + + −
= =

+

δp δp

δp

χ χ

χ
 2.94 

 

 1
4( ) ( ) ( ), 1,2,...,12

kk ki f a q i i iδδ δ+ − +⎡ ⎤= + =⎣ ⎦
pς χ  2.95 

 

 

We chose 2( 1)f a= + , where a  values were selected using Table 1 from [4].  Next, these 

updated quaternions are propagated forward using Equation 2.85 for each i, or step, 

shown below. 

 ( )1ˆ ˆ ˆ( ) ( ) ( ) 0,1,...,12k k ki i i iω− + +
+ = Ω =q q  2.96 

 

where again the angular velocities are given by Equation 2.97 similar to Equation 2.88 in 

the previous section.  Here, we can see that for ˆ (0) (0)k k k
βω ω+ = − χ , ˆ(0)k k

β β +=χ . 

 

 ˆ ( ) ( ), 0,1,...,12k k ki i iβω ω+ = − =χ  2.97 
 

The propagated error quaternions are now calculated using Equation 2.98. 
 
 1

1 1 1ˆ ˆ( ) ( ) (0) , 0,1,...,12k k ki i iδ
−− − −

+ + +⎡ ⎤= ⊗ =⎣ ⎦q q q  2.98 
 

it is interesting to note that where 1ˆ (0)kδ −
+q  here should be the identity quaternion 

[0, 0, 0, 1].  Finally, the propagated sigma points can be calculated using the following 

equations. 

 

 1(0) 0k
δχ + =p  2.99 

 

 
1

1
1

4

( )( ) , 1,2,...,12
( )

k

k
k

ii f i
a q i

δ δ
δ

+

−
+

+ −= =
+

p ςχ  2.100 

 

where 1( )k iδ −
+ς  and 

14 ( )
k

q iδ
+

−  are found from the following equation. 
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11 1 4( ) ( ) ( )

k

T T
k ki i q iδ δ δ

+

− − −
+ +

⎡ ⎤= ⎣ ⎦q ς  2.101 

 

We also know that from Equation 2.88, we can expect the following. 

 

 1( ) ( ), 1,2,...,12k ki i iβ β
+ = =χ χ  2.102 

 

3. Covariance and Gain Calculations 

 The next step in the UKF process is to calculate the covariances and gains which 

is the most notable difference between the EKF and UKF.  Now that we have calculated 

our sigma points, we can determine these values.  As previously mentioned in the 

derivation of the UKF, we can determine the predicted covariance matrix 1kP−
+ , shown as 

Pxx in the Matlab code, the output covariance 1
yy

kP + , and the cross correlation covariance 

1
xy

kP + .  These equations are found as 2.39, 2.43, and 2.45, respectively.  These equations 

are utilized in the “Covariance and Gain Calculations” section of the embedded Matlab 

code for the UKF.  For initial conditions, Pxx is the set to kQ , where the variations for the 

sensors are used.  The following equation is used for kQ . 

 

 
2 2 21

3 3 3 36
2

3 3 3 3

( ) 0
2 0

u
k

u

t ItQ
I

υσ σ
σ

× ×

× ×

⎡ ⎤− ΔΔ
= ⎢ ⎥

⎣ ⎦
 2.103 

 

The mean observation is also needed to calculate the covariance terms. 

 

 

1

2
1

1

ˆ ( )

ˆ ( )
( ) , 0,1,...,12

ˆ ( )

k

N k

A i r
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With these covariance matrices calculated, we can now determine the Kalman gain K 

from the equation in Table 5. Unscented Kalman Filter, from [9].  This equation is also 

shown below. 

 

 -1( )xy
k k kK P Pυυ=  2.105 

 

4. Update Routine for States and Error Covariance 

 After the gains are calculated, states and error covariances must be updated.  First, 

the error covariance is updated using the following equation. 
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The state update is found using  
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Finally we can update the quaternions using the following set of equations where 
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These equations are very similar to those used earlier to find the initial error quaternion.  

The final step here is to update the bias using Equation 2.88.  For further clarification, the 

Matlab code references the equations used with respect to [4].  This unscented Kalman 

filter was built to be compared with the extended Kalman filter.  The EKF and UKF 

models for attitude are based on the model presented in [9] and [4] where the state vector 

is represented as the error in the quaternion and generalized Rodriquez parameter 

respectively. 

E. IMPLEMENTATION OF THE EXTENDED KALMAN FILTER 

The EKF implemented in this simulation uses many of the equations used in 

previous sections.  Similar to the previous section, Figure 25 shows a flow chart of the 

EKF.  By comparison, we can see very clearly that the major difference in the EKF is the 

calculation of the sensitivity matrix, which is the inherent linearization processes 

associated with this filter.  Much of the information on the derivation of the EKF is 

discussed in [4] and Table 8 shows a summary of the EKF equations.  A complete listing 

of both the Matlab Simulation block diagram and embedded Matlab code are shown in 

Appendix B. 
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Figure 25. Extended Kalman Filter Flow Chart
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Table 8. Summary of EKF Equations, from [9] 
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IV. COMPARISON OF SIMULATION RESULTS USING EKF 
AND UKF FILTERING METHODS 

A. SIMULATION CONDITIONS 

In this section, several performance comparisons between the USQUE and EKF 

are made through simulations using the previously discussed spacecraft model and the 

designed EKF and UKF filters.  Using a 500-km circular orbit the simulation time was set 

at 4,000 seconds.  The attitude determination hardware in these simulations consisted of a 

gyroscopic rate sensor and a three-axis magnetometer (TAM).  The magnetic field 

reference model uses a magnetic dipole approximation as previously discussed.  

Furthermore, these sensors were characterized in previous work [4].  In the first 

simulation, the initial attitude error was set only to 30°, while the attitude rate error was 

set to 0°/sec in all axes.  A second simulation was run using an initial attitude error of 30° 

and an attitude rate error of 30°/sec in all axes. 

B. SIMULATION 1 RESULTS 

The following shows the results of Simulation 1.  Figure 26 shows the attitude 

error of the quaternion for the EKF estimator with 3σ  bounds.  We can see that the EKF 

takes approximately 4,000 seconds before the error is bounded.  Conversely, we can see 

that the attitude error of the UKF is bounded in approximately 2,500 seconds.  This is 

shown in Figure 27 where the generalized Rodriguez parameters are shown.  It is 

important to note that we use the generalized Rodriquez parameters instead of the 

quaternion for the UKF because the 3σ  bounds are calculated from the square root of the 

diagonals of the covariance matrix P .  For the UKF the covariance matrix is built from 

δp which is shown in Equation 2.79, as δp  is the error in the vector of the generalized 

Rodriquez parameter.  For comparison purposes, Figure 30 will show both normalized 

quaternion errors without the 3σ  bounds. 
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Figure 26. Simulation 1 Quaternion Attitude Error with 3σ Bounds for EKF 
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Figure 27. Simulation 1 Generalized Rodriguez Parameter Attitude Error with for 3σ 
Bounds for UKF 
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Similarly, we see that both EKF and UKF bias errors converge in a similar way.  

While Figure 28 shows the bias for the EKF converging within the 3σ bounds at 

approximately 2,700 seconds, Figure 29 shows convergence at a little after 1,000 

seconds.  We can also see that the initial estimates of the EKF are more inaccurate than 

the UKF. 
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Figure 28. Simulation 1 EKF Bias Errors with 3σ Bounds 
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Figure 29. Simulation 1 UKF Bias Errors with 3σ Bounds 
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Finally, we can see that the normalized EKF and UKF attitude errors converge as 

originally predicted and demonstrated in the simple pendulum problem.  Figure 30 

clearly shows the better performance of the UKF.  Again, as a nonlinear estimator, the 

UKF consistently shows better performance on all figures.  This is again shown in 

comparison plot of the normalized bias errors displayed in Figure 31 where we can see 

that, although both estimators are trending appropriately, that the UKF performs 

significantly better. 
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Figure 30. Comparison of EKF and UKF Normalized Attitude Errors for 
Simulation 1 
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Figure 31. Comparison of EKF and UKF Normalized Bias Errors for Simulation 1 

C. SIMULATION 2 RESULTS 

 The second simulation shows very similar results.  Although we can see similar 

trends in both the EKF and UKF error estimates, we can see that the UKF consistently 

performs better in every plot.  Again, Figure 32 shows the EKF attitude quaternion error, 

which settles within the 3σ bounds at approximately 3,000 seconds.  Figure 33 shows the 

UKF attitude generalized Rodriquez parameter error settles at 2,500 seconds.  The 

increased performance is shown without fail for all subsequent plots in this section. 
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Figure 32. Simulation 2 Quaternion Attitude Error with 3σ Bounds for EKF 
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Figure 33. Simulation 2 Generalized Rodriguez Parameter Attitude Error with for 3σ 
Bounds for UKF 

Figures 34 and 35 show that the bias for the EKF settles at approximately 2,700 seconds 

while the UKF bias settles at 1,700 seconds. 
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Figure 34. Simulation 2 EKF Bias Errors with 3σ Bounds 
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Figure 35.  Simulation 2 UKF Bias Errors with 3σ Bounds 
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Finally, we can see in Figure 36 that the normalized attitude error of the UKF is 

much better.  Similarly, this is shown in Figure 37 with the comparison of the normalized 

bias errors. 
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Figure 36. Comparison of EKF and UKF Normalized Attitude Errors for 
Simulation 2 
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Figure 37. Comparison of EKF and UKF Normalized Bias Errors for Simulation 2 

D. DISCUSSION OF RESULTS AGAINST PREVIOUS LITERATURE 

Much of the work on the UKF was researched [4].  In this paper, Crassidis and 

Markley discuss the performance of the UKF as it applies to the spacecraft attitude 

determination problem.  Figure 38 is taken from [4] and shows many similarities to the 

spacecraft model designed for this thesis.  Although the results are not identical, they 

shown very similar trends and performance characteristics.  It should be noted that the 

initial error conditions used for simulations in [4], were much larger and are used here to 

highlight the differences in accuracy.  The simulations done for this thesis were set at 

4,000 seconds. 
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Figure 38. Norm of Attitude Errors, from [4] 
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V. CONCLUSION 

A. SUMMARY 

The results from the simulations clearly show that the UKF developed here is 

more accurate than the EKF [2].  Both the EKF and UKF were rigorously tested and 

validated against previous research papers. These results show both that the UKF is 

largely better for nonlinearities, but that the EKF performs rather well.  To take 

advantage of the UKF, large nonlinearities must be present in the physical dynamics of 

the system.  In summary, we have shown that the UKF has a lower expected error than 

the EKF for all instances of spacecraft attitude determination.  We showed, in the 

pendulum problem, that as the nonlinearity of the dynamics increase, that the UKF shows 

increased performance over the EKF.  However, for slightly nonlinear or linear 

estimation, the EKF performs well and will provide accurate solutions.  The one 

remaining question is the computational expense that the extra computations cost.  In our 

simulations the UKF performed approximately 2.4 times slower than the EKF, which was 

consistent with [4].  As the optimization of any process is measured by a cost function, 

one must evaluate and prioritize the resources available.  Literature tells us that the UKF 

has 2.5 times the cost in computational time of the EKF [4].  For spacecraft with relaxed 

attitude-control requirements and low computational power, it could be argued that the 

EKF could perform sufficiently without the added expense.  However, the UKF can 

certainly be used in the worst case conditions, such as partial loss of attitude control, and 

in the “lost in space” scenario where anomalies in the separation event from the launch 

vehicle imparts a large torque on the spacecraft hurling it into an unwanted orientation.  

These scenarios, although somewhat unlikely, mostly likely cannot be recovered from 

using an EKF estimator. 

B. FUTURE WORK 

This thesis presents partial validation of the UKF and EKF estimators.  Although 

the results are favorable and largely resemble other research papers, a more realistic 

simulation would require hardware.  Further developments in the model can also be 
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applied. A high order magnetic field model could be implemented if the computing 

resources were available.  Most importantly, Monte Carlo simulations should be run to 

show the full performance characteristics of both filters.  All of this work is completely 

possible for further thesis students and laboratory research such as the currently being 

performed in the Nanosatellite Advance Concepts Laboratory. 

 



 73

APPENDIX A – SIMPLE PENDULUM SIMULATION 

 
SIMULINK Block Diagram - Simple Pendulum Simulation  
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Model Initialization Parameters 
 
time_step=0.05; 
sigmanoise=1e-2; 
R=sigmanoise^2; 
Q=diag([0.00001,0.00001,0.001]); 
 
 
fncA.m 
 
function deriv = fncA(x) 
m=50; 
g=9.81; 
l=0.1; 
  
deriv=zeros(3,1); 
deriv(1,1)=x(2,1); 
deriv(2,1)=-(m*g*l*sin(x(1)))/(x(3)+m*l^2); 
 
 
fncC.m 
 
%#eml 
function y = fncC(x) 
Bo=0.5;  
alf=30*pi/180; 
  
y=Bo*sin(x(1,1)+alf); 
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Unscented Kalman Filter – Embedded Matlab Block 
 
%#eml 
  
function [x_k1,Pxx_k1] = UKF(x_k,Pxx_k,Y_meas,ts,Q,R,kappa) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
  
Dx=size(x_k,1); 
Dy=size(Y_meas,1); 
NSig=2*Dx+1; 
sig_x=(chol((Dx+kappa)*Pxx_k))'; 
%%%%%%%%%%%%%%%%%%%%% 
x_sig_k=x_k*ones(1,NSig)+[zeros(Dx,1) sig_x -sig_x]; 
RK=zeros(Dx,4); 
x_sig_k1=zeros(Dx,NSig); 
y_sig_k1=zeros(Dy,NSig); 
  
for i=1:NSig 
    RK(:,1)=fncA(x_sig_k(:,i)); 
    RK(:,2)=fncA(x_sig_k(:,i)+1/2*ts*RK(:,1)); 
    RK(:,3)=fncA(x_sig_k(:,i)+1/2*ts*RK(:,2)); 
    RK(:,4)=fncA(x_sig_k(:,i)+ts*RK(:,3));     
    x_sig_k1(:,i)=x_sig_k(:,i)+1/6*ts*RK*[1 2 2 1]'; 
    y_sig_k1(:,i)=fncC(x_sig_k1(:,i)); 
end 
  
W=ones(NSig,1)/(2*(Dx+kappa)); 
W(1,1)=kappa/(Dx+kappa); 
  
x_k1p=x_sig_k1*W; 
y_k1p=y_sig_k1*W; 
  
Pxx_k1p=Q; 
Pyy_k1p=R; 
Pxy_k1p=zeros(Dx,Dy); 
  
for i=1:NSig 
    xdif=x_sig_k1(:,i)-x_k1p; 
    ydif=y_sig_k1(:,i)-y_k1p; 
    Pxx_k1p=Pxx_k1p+xdif*xdif'*W(i,1); 
    Pyy_k1p=Pyy_k1p+ydif*ydif'*W(i,1); 
    Pxy_k1p=Pxy_k1p+xdif*ydif'*W(i,1); 
end 
  
K=Pxy_k1p/Pyy_k1p; 
Pxx_k1=Pxx_k1p-K*Pxy_k1p'; 
x_k1=x_k1p+K*(Y_meas-y_k1p); 
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Extended Kalman Filter Block 
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Extended Kalman Filter –Propagation Block 
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Integrate- Embedded Matlab Block 
 
function [xprop, Phi] = Integrate(x,ts) 
% This block supports the Embedded MATLAB subset. 
% See the help menu for details.  
  
KX1=fncA(x); 
KP1=F(x); 
KX2=fncA(x+1/2.0*ts*KX1); 
KP2=F(x+1/2.0*ts*KX1)*(eye(3)+1/2.0*ts*KP1); 
KX3=fncA(x+1/2.0*ts*KX2); 
KP3=F(x+1/2.0*ts*KX2)*(eye(3)+1/2.0*ts*KP2); 
KX4=fncA(x+ts*KX3); 
KP4=F(x+ts*KX3)*(eye(3)+ts*KP3); 
  
xprop = x + 1/6.0*ts*(KX1+2*KX2+2*KX3+KX4); 
Phi = eye(3) + 1/6.0*ts*(KP1+2*KP2+2*KP3+KP4); 
return 
  
function deriv=F(x) 
m=50; 
g=9.81; 
l=.1; 
  
deriv=zeros(3,3); 
deriv(1,2)=1; 
deriv(2,1)=-m*g*l*cos(x(1,1))/(x(3,1)+m*l^2); 
deriv(2,3)=m*g*l*sin(x(1,1))/(x(3,1)+m*l^2)^2; 
return 
 
 
pendulum_plots.m 
 
x_true=zeros; 
[m n p]=size(x); 
x_true(1:m,1:p)=x(1:m,1,1:p); 
x_true=x_true'; 
  
  
%% State 1: Theta 
  
%EKF Error 
figure(1) 
plot(t, (x_est_ekf(:,1)-x_true(:,1))*180/pi); 
grid on 
title('EKF Angle Error (Deg)') 
xlabel('Time (S)') 
ylabel('Angle Error (Deg)') 
% ylim([-5 5]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ekf(:,1))*180/pi','-.'); 
plot(t, -3*sqrt(Pxx_est_ekf(:,1))*180/pi','-.'); 
%UKF Error 
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figure(2) 
plot(t, (x_est_ukf(:,1)-x_true(:,1))*180/pi); 
grid on 
title('UKF Angle Error (Deg)') 
xlabel('Time (S)') 
ylabel('Angle Error (Deg)') 
% ylim([-5 5]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ukf(:,1))*180/pi','-.'); 
plot(t, -3*sqrt(Pxx_est_ukf(:,1))*180/pi','-.'); 
 
%% State 2: Omega - Angular Rate 
 
%EKF Error 
figure(4) 
plot(t, (x_est_ekf(:,2)-x_true(:,2))*180/pi); 
grid on 
title('EKF Angular Rate Error (Deg/Sec)') 
xlabel('Time (S)') 
ylabel('Angular Rate Error (Deg/Sec)') 
% ylim([-10 10]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ekf(:,2))*180/pi','-.'); 
plot(t, -3*sqrt(Pxx_est_ekf(:,2))*180/pi','-.'); 
 
%UKF Error 
figure(5) 
plot(t, (x_est_ukf(:,2)-x_true(:,2))*180/pi); 
grid on 
title('UKF Angular Rate Error (Deg/Sec)') 
xlabel('Time (S)') 
ylabel('Angular Rate Error (Deg/Sec)') 
% ylim([-10 10]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ukf(:,2))*180/pi','-.'); 
plot(t, -3*sqrt(Pxx_est_ukf(:,2))*180/pi','-.'); 
  
%% State 3: Iy - Moment of Inertia 
  
%EKF Error 
figure(7) 
plot(t, x_est_ekf(:,3)-x_true(:,3)); 
grid on 
title('EKF Moment of Inertia Error') 
xlabel('Time (S)') 
ylabel('Moment of Inertia (kg m^2)') 
% ylim([-5 5]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ekf(:,3))','-.'); 
plot(t, -3*sqrt(Pxx_est_ekf(:,3))','-.'); 
  
%UKF Error 
figure(8) 
plot(t, x_est_ukf(:,3)-x_true(:,3)); 
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grid on 
title('UKF Moment of Inertia Error') 
xlabel('Time (S)') 
ylabel('Moment of Inertia (kg m\^2)') 
% ylim([-5 5]) 
hold on 
plot(t, 3*sqrt(Pxx_est_ukf(:,3))','-.'); 
plot(t, -3*sqrt(Pxx_est_ukf(:,3))','-.'); 
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APPENDIX B – SPACECRAFT ATTITUDE 
DETERMINATION SIMULATION 

ADS_SpacecraftSim.mdl 
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Orbit Propagator-Simulink Block 
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Calculate Altitude-Simulink Block 
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Keplerian Orbit Propagation- Simulink Block 
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Calculate Orbital Elements – Embedded Matlab Code 
 
function [rho_earth,beta,TA,r,Vt,Vr,Lat,Long] = 
fcn(time,Re,incl,ecc,R,V) 
% ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ 
% 
% This function computes the classical orbital elements  
% from the state vector (R,V) using Algorithm 4.1.  As well as 
% other orbital parameters needed by the model. 
% 
% mu - gravitational parameter (mˆ3/sˆ2) 
% R - position vector in the geocentric equatorial frame (m) 
% V - velocity vector in the geocentric equatorial frame (m/s) 
% r, v - the magnitudes of R and V 
% vr - radial velocity component (m/s) 
% H - the angular momentum vector (mˆ2/s) 
% h - the magnitude of H (mˆ2/s) 
% incl - inclination of the orbit (rad) 
% N - the node line vector (mˆ2/s) 
% n - the magnitude of N 
% cp - cross product of N and R 
% RA - right ascension of the ascending node (rad) not used 
************** 
% E - eccentricity vector 
% ecc - eccentricity (magnitude of E) 
% eps - a small number below which the eccentricity is 
% considered to be zero 
% w - argument of perigee (rad) not used 
******************************* 
% TA - true anomaly (rad) 
% Vt - tangential velocity (m/s) 
% Vr - radial velocity (m/s) 
% rho_earth - earth anglular radius 
% beta - beat angle (rad) 
% Lat - Latitude of satellite (rad) 
% Long - Longitude of satellite (rad) 
% ------------------------------------------------------------ 
mu = 398.6004418e12;               % m^3/s^2 
eps = 1.0e-10; 
r = norm(R); 
v = norm(V); 
vr = dot(R,V)/r; 
H = cross(R,V); 
h = norm(H); 
  
%   Calc inclination 
%{ 
c = H(3)/h; 
if (c < -1) && (c > 1) 
    c = c - pi; 
end 
incl = acos(c); 
%} 
%   Calc right ascension of the ascending node (rad) 
N = cross([0 0 1],H); 
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n = norm(N); 
  
%   Calc Eccentricity 
  
E = 1/mu*((v^2 - mu/r)*R - r*vr*V); 
%ecc = norm(E); 
  
%   True Annomoly 
if ecc > eps 
    c = dot(E,R)/ecc/r; 
    if (c < -1) && (c > 1) 
        c = c - pi; 
    end 
    TA = acos(c); 
    if vr < 0 
        TA = 2*pi - TA; 
    end 
else 
    cp = cross(N,R); 
    c = dot(N,R)/n/r; 
    if (c < -1) && (c > 1) 
        c = c - pi; 
    end 
    if cp(3) >= 0 
        TA = acos(c); 
    else 
        TA = 2*pi - acos(c); 
    end 
end 
  
%   Calculate the tangential and radial velocities 
Vt = h/r; 
Vr = mu/h*ecc*sin(TA); 
  
%   Calculate earth angular radius 
rho_earth = asin(Re/r); 
  
%   Beta calcs 
wb_0 = 0; 
ub_0 = 0; 
wb_dot = (-9.9639/86400)*rho_earth^(3.5)*cos(incl)/(1-ecc^2)^2; 
wb = (wb_0 + wb_dot*time)*pi/180; 
gamma = 23.442*pi/180;                  %rad 
ub_dot = (0.985648/86400)*pi/180;       %rad 
ub = ub_0+ub_dot*time; 
  
beta = asin(sin(ub)*sin(gamma)*cos(incl) + ... 
    cos(ub)*sin(incl)*sin(wb)-sin(ub)*cos(gamma)*sin(incl)*cos(wb)); 
  
%   For Mag Calc ---------------------------------------------- 
%   Calculate Earth Coordinate by Simulate the Earth's Rotation 
%   Track the movement of (0 Lat, 0 Long) 
PhiE = time*2*pi/(23.93*3600); 
ThetaE = 0; 
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EarthCoord = [Re,ThetaE,PhiE]; 
  
%   Calculate Sat Coordinate in Polar 
X = R(1); 
Y = R(2); 
Z = R(3); 
  
Theta = atan2(sqrt(X^2+Y^2),Z); 
Phi = atan2(Y,X); 
  
SatCoord = [r,Theta,Phi]; 
  
%   Calculate Lat and Long 
Theta0 = pi/2-SatCoord(2); 
Phi0 = SatCoord(3); 
  
Phi1 = EarthCoord(3); 
  
Lat = Theta0; 
Long = (Phi0-Phi1); 
  
if Long > pi 
    Long = Long-2*pi; 
end 
if Long < -pi 
    Long = Long+2*pi; 
end 
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Environmental Effects- Simulink Block 
 
 

Eclipse
5

Inertial Sun Vector
4

Body Sun Vector
3

Magnetic Field
2

rho _a
1

set output to 0
if crho /cbeta >1

rho*1.5^(cBcTA)

u(1)*1.5^u(2)

[C_NE]
[C_EN]

[cB]
[cTA]

cb*cTA

S_hat 1

C_BO

C_NB

beta

TA

S_body

S_inertial

S

Product 1

Matrix
Multiply

Product

Matrix
ultiply

Magnetic Dipole Model

R B_eciEarth_Mag _Field
[b]

EarthRotation

time

C_EN

C_NE

ECI_2_ECEF

Divide

Density vs . altitude
lookup table

x

xdat

ydat

y

Compare
To Zero

>= 0

time

[nS_hat ]

[eclipse ]

[bS_hat ]

[b]

[rho_a]

 density data
-C-

 altitude reference
-C-

 Earth Rotation
Rate

-C-

[eclipse ]

[bS _hat ]

[nS _hat ]

[C_NE]

[cB]

[cTA]

cos

[C_EN]

cos

[rho _a]

<= 1

cos

earth angular 
radius

7

TA
6

beta
5

C_BO
4

C_NB

3

R
2

altitude
1

 



 87

 
EFI_2_ECEF-Embedded Matlab Code 
 
function [C_EN,C_NE]= ECI_2_ECEF(EarthRotation,time) 
%   transformation of eci to ecef coordinates 
  
theta = EarthRotation(3)*time; 
  
C_EN = [ cos(theta) -sin(theta) 0; 
         sin(theta) cos(theta) 0; 
         0          0          1]; 
C_NE =C_EN'; 
 
 
Magnetic Dipole Model - Embedded Matlab Code 
function B_eci  = Earth_Mag_Field(R) 
% Magnetic dipole model - in Tesla 
  
theta = 11.7;                                               % deg 
DCM = [1 0 0; 0 cosd(theta) sind(theta); 0 -sind(theta) cosd(theta)]'; 
mu0 = 4*pi*10e-7;                                           % N/Amp^2 
M = DCM*[0 0 8e22]';                                        % A*m^2 
  
r = norm(R); 
r_hat = R/r; 
  
B_eci = mu0*(3*dot(M,r_hat)*r_hat-M)/(4*pi*r^3); 
 
 
 
 
S_hat1 – Embedded Matlab Code 
 
function [S_body,S_inertial] = S(C_BO,C_NB,beta,TA) 
% This block supports an embeddable subset of the MATLAB language. 
% See the help menu for details.  
  
B=beta; 
  
S_orbit = [cos(B)*sin(TA);... 
              sin(B);... 
           cos(B)*cos(TA)]; 
   
S_body = C_BO*S_orbit; 
  
S_inertial = C_NB*S_body; 
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Dynamics and Kinematics - Simulink Block 
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Attitude Dynamics - Simulink Block 
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torque2omegadot.m EML 
 
 
function Wdot = torque2omegadot(T, J, W) 
  
% This function takes input of applied torque (T) in component 
% elements, current angular velocity (W) in component 
% elements, and the moment-of-inertia matrix (J) as a diagonal 
% matrix containing the MOIs for the principal axes of the body 
% along the diagonal.  Angular acceleration is then computed and 
% output as a 3x1 vector (Wdot). 
  
Wx = W(1); Wy = W(2); Wz = W(3); 
Jxx = J(1,1); Jyy = J(2,2); Jzz = J(3,3); 
Tx = T(1); Ty = T(2); Tz = T(3); 
  
wdotx = (Tx-(Jzz-Jyy)*Wz*Wy)/Jxx; 
wdoty = (Ty-(Jxx-Jzz)*Wx*Wz)/Jyy; 
wdotz = (Tz-(Jyy-Jxx)*Wy*Wx)/Jzz; 
  
Wdot = [wdotx; wdoty; wdotz]; 
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Disturbance Torques– Simulink Block 
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Torque Gravity Gradient – EML 
 
function Tgg  = T_Grav_Grad(C_BO, r, J, mu) 
% T_Grav_Grad takes inputs of the spacecraft inertia matrix (J), 
% current orbit radius (r) in m, and the Orbit-to-Body Frame DCM (C_BO) 
% to calculate the gravity gradient torque in the body frame (Tgg) and 
% orbit frame (T_o).  The orb_vec vector defines which orbit frame axis 
% is aligned with the force producing the torque.  In this case, the z-
axis 
% points along nadir in the orbit frame, and corresponds to the r-
vector  
% direction.  
  
orb_vec = [0; 0; 1]; 
  
c = C_BO*orb_vec; 
  
Jxx = J(1,1); 
Jyy = J(2,2); 
Jzz = J(3,3); 
  
Tgg = 3*mu/r^3*[(Jzz-Jyy)*c(2)*c(3);... 
                (Jxx-Jzz)*c(1)*c(3);... 
                (Jyy-Jxx)*c(1)*c(2)]; 
             
  
             
 
 
 
Torque Aerodynamic – Simulink Block 
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Determine Normalized Velocity Vector – Simulink Block 
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Calculate Aero Torque – Simulink Block 
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Solar Torque – Simulink Block 
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Calculate Solar Torque – Simulink Block 
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Sensors – Simulink Block 
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Gyro – Simulink Block 
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Star Tracker – Block Diagram 
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Star Tracker – Embedded Matlab Code 
 
function q = StarTracker(u,qbn) 
  
ph=u(1)/2;    th=u(2)/2;    ps=u(3)/2; 
  
sph = sin(ph);  sth = sin(th);  sps = sin(ps); 
cph = cos(ph);  cth = cos(th);  cps = cos(ps); 
  
q = [sph*cth*cps-cph*sth*sps; 
     cph*sth*cps+sph*cth*sps; 
     cph*cth*sps-sph*sth*cps; 
     cph*cth*cps+sph*sth*sps]; 
  
[Y I]=max(abs(q)); 
q=q/norm(q)*sign(q(I,1)/qbn(I,1)); 
 
 
 
 
Sun Sensors – Block Diagram 
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ATT.m 
function att = ATT( quat ) 
att = transpose(XI(quat)) * PSI(quat); 
return 
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Sun Sensor Facing YO – Simulink Block 
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Sun Sensor Facing YO1 – Block Diagram 
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Mag Inertial to Body – Simulink Block 
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Magnetometer Model – Simulink Block 
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Multiplicative Quaternion Extended Kalman Filter- Simulink Block 
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MEKF – Embedded Matlab Code 
 
function [wk1,qk1,biask1,Pk1] = EKF(wk1t,q_init,bias_init,Bk1,B,dt,sig) 
  
sig_v = sig(1); 
sig_u = sig(2); 
sig_mag = sig(5); 
  
persistent qk biask wk Pk; 
% Initialize States and Measurement 
if isempty(qk) 
    qk=q_init; 
    biask = bias_init; 
    wk = wk1t; 
    Pk=[ (0.8)^2*eye(3) zeros(3); zeros(3) (3*pi/180)^2*eye(3)]; 
  
    wk1=wk; 
    qk1=qk; 
    biask1=biask; 
    Pk1=Pk; 
    return; 
end 
  
%% Propagation 
biask1 = biask; 
  
  
Skew_w = SKEW(wk); 
Mag_w  = norm(wk); 
  
psik = (sin(1/2*Mag_w*dt)/Mag_w)*wk; 
Omega = [cos(1/2*Mag_w*dt)*eye(3)-SKEW(psik) psik; 
        -psik'                 cos(1/2*Mag_w*dt) ]; 
qk1 = Omega*qk; 
  
Phi_11 = eye(3)-Skew_w*sin(Mag_w*dt)/Mag_w + Skew_w^2*(1-
cos(Mag_w*dt))/Mag_w^2;        % 7.59b 
Phi_12 = Skew_w*(1-cos(Mag_w*dt))/Mag_w^2 - eye(3)*dt -...                             
% 7.59c 
    Skew_w^2*(Mag_w*dt-sin(Mag_w*dt))/Mag_w^3; 
Phi_21 = zeros(3);                                                                     
% 7.59d 
Phi_22 = eye(3);                                                                       
% 7.59e 
  
Phi = [Phi_11 Phi_12; Phi_21 Phi_22];                                                  
% 7.59a 
  
Gk = [-eye(3) zeros(3); zeros(3) eye(3)]; 
Qk = [ (sig_v^2*dt+1/3*sig_u^2*dt^3)*eye(3) -(1/2*sig_u^2*dt^2)*eye(3) 
; 
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      -(1/2*sig_u^2*dt^2)*eye(3)             (sig_u^2*dt)*eye(3)      
]; 
  
Pk1 = Phi*Pk*Phi'+Gk*Qk*Gk'; 
  
%% Update Loop  ------------------------------------------------------- 
Att = ATT(qk1); 
delX = zeros(6,1); 
%   Update for Magnetometer Measurement ------------------------------- 
H = [SKEW(Att*B) zeros(3,3)]; 
  
R = sig_mag^2*eye(3); 
  
% Gain 
K = (Pk1*H')/(H*Pk1*H' + R); 
  
% Update 
Pk1 = (eye(6) - K*H)*Pk1; 
            
res = Bk1 - Att*B; 
delX = delX + K*(res-H*delX); 
  
qk1 = qk1+1/2*XI(qk1)*delX(1:3,:); 
qk1 = qnormalize(qk1'*qk1,qk1); 
  
biask1 = biask1 + delX(4:6,:); 
  
wk1 = wk1t - biask1; 
%   Save previous values 
qk = qk1; 
biask = biask1; 
wk = wk1; 
Pk = Pk1; 
  
return 
%---------------------------------------------------------------------- 
  
%% Normalizing routine for quaternions 
function qk1 = qnormalize(qnorm,qk1) 
while (qnorm) > 1  
    if qnorm < 1 + 1e-9 
        qk1 = ((3 + qnorm)/(1 + 3*qnorm))*qk1; 
        %   rescale quaternion to (err^3)/32 
    else 
        qk1 = qk1/sqrt(qnorm); 
        %   renormalize quaternion 
    end 
    qnorm = qk1'*qk1; 
end 
return 
%---------------------------------------------------------------------- 
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Unscented Kalman Filter – USQUE- Simulink Block 
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UKF- USQUE– Embedded Matlab Code 
 
function [wk1,qk1,biask1,Pxx_k1] = 
UKF(wk1t,q_init,bias_init,Bk1,B,dt,sig,lambda,a) 
  
% 
=======================================================================
== 
%                             Initialization 
% 
=======================================================================
== 
  
  
% Variance of Sensors 
sig_v   = sig(1); 
sig_u   = sig(2); 
sig_mag = sig(5); 
f = 2*(a+1);                           % Ref [3] pg 6 
  
  
persistent qk biask Pxx_k 
% Initialize States and Measurement 
if isempty(qk) 
    qk=q_init; 
    biask = bias_init; 
    disp(q_init); 
    disp(bias_init); 
    Pxx_k=[(1)^2*eye(3) zeros(3); zeros(3) (3*pi/180)^2*eye(3)]; 
end 
  
% 
=======================================================================
== 
%                       Calculation of Sigma Points 
% 
=======================================================================
== 
  
Qbar_k = dt/2*[(sig_v^2-1/6*sig_u^2*dt^2)*eye(3)      zeros(3)    ;        
% Ref [3] 42 
                        zeros(3)                  sig_u^2*eye(3) ]; 
  
                     
%  Sigma points equations                     
x_k = [[0 0 0]'; biask]; 
Dx=size(x_k,1); 
Dy=size(Bk1,1); 
NSig=2*Dx+1; 
sig_x=chol((Dx+lambda)*(Pxx_k+Qbar_k))';                       % Ref 
[3]  5a 
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chi_sig_k=x_k*ones(1,NSig)+[zeros(Dx,1) sig_x -sig_x];        % Ref [3]  
5a 
chi_sig_k1=zeros(6,NSig);                             % Ref [3] 32 
y_sig_k1=zeros(3,NSig); 
q_k1=zeros(4,1); 
  
  
for i=1:NSig     
  
    del_q_k=delp2delq(chi_sig_k(1:3,i),a,f); 
    q_sig_k = quaterr(del_q_k, qk); 
     
    % 
===================================================================== 
    %       Propagate Forward the Quaternion (still in the loop!) 
    % 
===================================================================== 
     
    w_sig_k = wk1t - chi_sig_k(4:6,i);                    % Ref [3]  35 
    Mag_w  = norm(w_sig_k); 
    psik = (sin(1/2*Mag_w*dt)/Mag_w)*w_sig_k;              
    zk = cos(1/2*Mag_w*dt)*eye(3)-SKEW(psik);              
  
    Omega = [  zk,           psik;                        % Ref [3]  29 
             -psik',  cos(1/2*Mag_w*dt) ]; 
  
    q_sig_k1 = Omega*q_sig_k;                             % Ref [3]  34 
     
    % ========================= 
    %   Saving the q(-)k+1(0)                             % Ref [3]  36 
    % =========================  
  
    if i==1 
  
        q_k1=q_sig_k1; 
    end 
     
  
    del_q_k1 = quaterr(q_sig_k1, [-q_k1(1:3,1);q_k1(4,1)]); 
    chi_sig_k1(1:3,i) = f*del_q_k1(1:3,1)/(a+del_q_k1(4,1));  % Ref [3] 
37b 
    chi_sig_k1(4:6,i) = chi_sig_k(4:6,i); 
    y_sig_k1(:,i) = ATT(q_sig_k1)*B; 
     
    % 
===================================================================== 
    % Note: The bias does not change so chi_sig_k1(4:6,i) stays the 
same 
    % 
===================================================================== 
  
end 
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    % 
===================================================================== 
    %                   Following  USQUE Method Ref [3] pg 6 
    % 
===================================================================== 
  
  
  
%  Calculating Weights 
R = sig_mag^2*eye(3); 
  
W=ones(NSig,1)/(2*(Dx+lambda)); 
W(1,1)=lambda/(Dx+lambda); 
  
%  Mean Point Calculations 
x_k1p=chi_sig_k1*W; 
y_k1p=y_sig_k1*W; 
  
  
% 
=======================================================================
== 
%                      Covariance and Gain Calculations 
% 
=======================================================================
== 
  
  
% Error Covariance Calculation 
Pxx_k1p=Qbar_k; 
Pyy_k1p=R; 
Pxy_k1p=zeros(Dx,Dy); 
  
for i=1:NSig 
    xdif=chi_sig_k1(:,i)-x_k1p; 
    ydif=y_sig_k1(:,i)-y_k1p; 
    Pxx_k1p=Pxx_k1p+xdif*xdif'*W(i,1); 
    Pyy_k1p=Pyy_k1p+ydif*ydif'*W(i,1); 
    Pxy_k1p=Pxy_k1p+xdif*ydif'*W(i,1); 
end 
  
% Gain and Update 
K = Pxy_k1p/Pyy_k1p;  % Gain 
  
Pxx_k1 = Pxx_k1p-K*Pxy_k1p';  % Error Covariance Update 
x_k1 = x_k1p+K*(Bk1-y_k1p);   % State Update 
  
% Calculation of Updated Quaternion! 
del_q_k1=delp2delq(x_k1(1:3,:),a,f); 
qk1 = quaterr(del_q_k1,q_k1); 
qk1 = qnormalize(qk1); 
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biask1 = x_k1(4:6,1); 
wk1 = wk1t-biask1; 
  
% 
=======================================================================
== 
%                       Setup for Next Update 
% 
=======================================================================
== 
  
  
qk=qk1; 
biask=biask1; 
Pxx_k = Pxx_k1; 
  
return 
%  
%  
% %--------------------------------------------------------------------
------ 
%% Normalizing routine for quaternions 
function qk1 = qnormalize(qk1) 
qnorm=qk1'*qk1; 
while (qnorm) > 1  
    if qnorm < 1 + 1e-9 
        qk1 = ((3 + qnorm)/(1 + 3*qnorm))*qk1; 
        %   rescale quaternion to (err^3)/32 
    else 
        qk1 = qk1/sqrt(qnorm); 
        %   renormalize quaternion 
    end 
     qnorm = qk1'*qk1; 
end 
return 
%----------------------------------------------------------------------
---- 
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ADS_MainScript.m 
 
%%  Spacecraft Attitude Determination Script 
%   Note that this code runs both the EKF and the UKF 
  
  
%   Created by Orlando X. Diaz 
%   Advisor Dr. Marcelo Romano 
%   Co-Advisor Dr. Hyun-wook Woo 
    
%%  Format 
    clear all 
    close all 
    clc 
  
    global CONST 
    R2D = 180/pi; 
    D2R = pi/180; 
%%  Set Simulation Conditions 
  
    InitialEuler = [0,0,0];%deg    
    ReferenceEuler = [0 0 0];%deg 
                                      
     
%***  Toggle switches turn the labeled functions on (1) or off (0).  
*** 
    Tgg_toggle      = 1;%                            
    Taero_toggle    = 1;% 
    Tsolar_toggle   = 1;% 
    timeOn          = 1; 
    taOn            = 0; 
    cboOn           = 0; 
    qbnOn           = 1; 
    qbnmOn          = 1; 
    rOn             = 0; 
    hOn             = 0; 
    e321On          = 1; 
    wbnOn           = 1; 
    tcOn            = 0; 
    hsOn            = 0; 
    wbnfOn          = 1; 
    biasOn          = 1; 
    biasfOn         = 1; 
    pdOn            = 1; 
    pnOn            = 1; 
    qbnfOn          = 1; 
    wbnmOn          = 1; 
    werrOn          = 1; 
    berrOn          = 1; 
    qerrOn          = 1; 
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%%  Set Constants 
    CONST.mu        = 398.6004418e12;%m^3/s^2     
    CONST.mu_moon   = 4.902802953597e12;%m^3/s^2 
    CONST.mu_sun    = 1.327122E20;%m^3/s^2 
    CONST.Re        = 6.378137E6;%m                 earth radius 
    CONST.Rs        = 1.4959787e11;%m               solar radius 
    CONST.J2        = 1.08262668355E-3;%            J2 term 
    CONST.J3        = -2.53265648533E-6;%           J3 term 
    CONST.J4        = -1.61962159137E-6;%           J4 term 
    CONST.SolarPress= 4.51e-6;%N/m^2                solar wind pressure 
    CONST.SOLARSEC  = 806.81112382429;%TU 
    CONST.w_earth   = -[0;0;.0000729211585530];%r/s earth rotation 
    CONST.Cd        = 2.5;%                         Coefficient of Drag 
    CONST.Cr        = .6;%                          Coefficient of 
Reflect 
    CONST.OmegaDot  = 1.991e-7;%rad/s               ascending node 
advance for sun-synch 
     
%%  Set Orbital Elements 
    %Kep elements meters and radians (a,e,i,W,w,n) 
     
    h_p             = 500e3;%m                      altitude at perigee 
    h_a             = 500e3;%m                      altitude at apogee         
     
     
    RAAN = 0;%rad                                   Right Ascention  
    w = 0;%rad                                      argument of perigee                
    TAo = 0;%rad                                    true anomaly 
    Rp  = CONST.Re+h_p;%m                           radius of perigee 
    Ra  = CONST.Re+h_a;%m                           radius of apogee 
    e   = (Ra-Rp)/(Ra+Rp);%(m/m)                    eccentricity 
    a   = (Ra+Rp)/2;%m                              semi-major axis 
    ho  = sqrt(a*CONST.mu*(1-e^2));%mÿ2/s           initial angular 
momentum  
    P   = 2*pi*(a^3/CONST.mu)^.5;%sec               Orbit Period 
    i_sunsynch = acosd((CONST.OmegaDot*(1-e^2)^2*a^(7/2))... 
        /(-3/2*sqrt(CONST.mu)*CONST.J2*CONST.Re^2));%eqn 4.47 from 
Curtis 
    i   = i_sunsynch*D2R;%deg (rad)                 orbit inclination 
     
    [Ro,Vo] = sv_from_coe(CONST.mu,[ho e RAAN i w TAo]);%    initial 
orbital state vector 
  
%%  Set ICs 
  
w_BNo = [0;2*pi/P;0];%rad   initial body rates 
w_ON =  [0;2*pi/P;0];%rad 
  
rand('seed',2); 
randn('seed',2); 
seedarw=1; 
seedrrw=2; 
seedst=3; 
seedmag=4; 
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%   Sensor parameters 
%   Gyro 
GYRO_Bias = (3*randn(3,1))*pi/180;  % + 3 deg/sec 
N_ARW = (0.029)*pi/180;                                                
K_RRW = (0.0002)*pi/180;                                     
ARW = N_ARW^2;                      % angular white noise Variance 
RRW = K_RRW^2/3;                    % bias variance 
Gg = eye(3).*(-0.01+0.02*rand(3)) +... 
    (ones(3,3)-eye(3)).*(-0.0006+0.0012*rand(3)); %percent 
  
%   Magnetometer 
sigMag = 1.25e-7; 
Gm = eye(3).*(-0.02+0.04*rand(3)) +... 
    (ones(3,3)-eye(3)).*(-0.0028+0.0056*rand(3)); %percent 
  
%   Sun Sensor 
S1 = [0 45 0]'*pi/180; 
S2 = [45 0 0]'*pi/180; 
  
SS_n1 = [1 0 0]; 
SS_n2 = [1 0 0]; 
FOV = 0.7; 
sigSS = 0.1; 
J = Bessel(sigSS/2,FOV).*pi/180; 
  
%   Star Tracker 
sigST = 70 /3 /60 /60*pi/180;       %arcsec to rad (3sig) 
  
%   Kalman Filter 
dt = 0.05;                          %sec (20 Hz) model speed 
t_ekf = dt;                         %sec (100 Hz) ekf speed 
sig(1) = sqrt(ARW);                 %rad/Hz^(1/2), ARW 
sig(2) = sqrt(RRW);                 %rad/sec^(3/2), RRW 
sig(3) = sigST;                     %rad, Star Tracker Error 
sig(4) = sigSS*pi/180;              %rad, Sun Sensor Error 
sig(5) = sigMag;                    %tesla, magnetometer error 
  
ReferenceOmega = w_ON; 
  
[qBOo] = Euler_to_Quaternion(InitialEuler); 
[ReferenceQuaternion] = Euler_to_Quaternion(ReferenceEuler); 
  
qBNo = qBOo; 
     
%%  Run Simulation 
[Spacecraft]= SCproperties; 
  
J_Matrix = Spacecraft.MOI; 
  
[density_table] = GetDensity; 
  
RunTime = 4000;%sec  
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tic 
sim('ADS_SpacecraftSim',RunTime); 
Total_Model_time = toc 
factor = RunTime/Total_Model_time 
  
DisturbanceTorques.Tgg = Tgg; 
DisturbanceTorques.Taero = Taero; 
DisturbanceTorques.Tsolar = Tsolar; 
  
SensorMeasurements.ST = q_BNm; 
SensorMeasurements.Gyro = w_BNm; 
SensorMeasurements.bias = bias; 
SensorMeasurements.SS1 = ss1; 
SensorMeasurements.SS2 = ss2; 
SensorMeasurements.Mag = Bm; 
  
FilterEst.Q = q_BNf; 
FilterEst.Gyro = w_BNf; 
FilterEst.bias = bias_f; 
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PlotUKFError.m 
 
bias_e_u1=squeeze(bias_e_u1); 
[m,n]=size(bias_e_u1); 
if m<n 
    bias_e_u1=bias_e_u1'; 
end 
  
for i=1:3 
    figure(1) 
    subplot(3,1,i) 
    plot(SimTime1,p_BNe_u1(:,i)) 
    hold on 
    plot(SimTime1,3*sqrt(Pdiag_u1(:,i)),'-.r') 
    plot(SimTime1,-3*sqrt(Pdiag_u1(:,i)),'-.r') 
    grid on 
    xlim([0 4000]) 
    ylim([-.2 .2]) 
    xlabel('Time (Sec)') 
    label=['\deltap' num2str(i)]; 
    ylabel(label) 
  
end 
subplot(3,1,2) 
ylim([-.05 .05]) 
subplot(3,1,1) 
title('Generalized Rodriquez Parameter Error for UKF') 
  
for i=4:6 
    figure(2) 
    subplot(3,1,i-3) 
    plot(SimTime1,bias_e_u1(:,i-3)); 
    hold on 
    plot(SimTime1,3*sqrt(Pdiag_u1(:,i)),'-.r'); 
    plot(SimTime1,-3*sqrt(Pdiag_u1(:,i)),'-.r'); 
    grid on 
    xlim([0 4000]) 
    ylim([-5E-4 5E-4])   
    xlabel('Time (Sec)') 
    label=['\delta \beta ' num2str(i-3)]; 
    ylabel(label) 
end 
subplot(3,1,1) 
title('Bias Error for UKF') 
  
  
bias_e_e1=squeeze(bias_e_e1); 
[m,n]=size(bias_e_e1); 
if m<n 
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    bias_e_e1=bias_e_e1'; 
end 
for i=1:3 
    figure(3) 
    subplot(3,1,i) 
    plot(SimTime1,q_BNe_e1(:,i)) 
    hold on 
    plot(SimTime1,3/2*sqrt(Pdiag1(:,i)),'-.r'); 
    plot(SimTime1,-3/2*sqrt(Pdiag1(:,i)),'-.r'); 
    grid on 
    xlim([0 4000]) 
    ylim([-.15 .15])  
    ylim([-.2 .2]) 
    xlabel('Time (Sec)') 
    label=['\deltaq' num2str(i)]; 
    ylabel(label) 
  
end 
subplot(3,1,1) 
title('Quaternion Error for EKF') 
subplot(3,1,2) 
ylim([-.02 .02]) 
  
for i=4:6 
    figure(4) 
    subplot(3,1,i-3) 
    plot(SimTime1,bias_e_e1(:,i-3)) 
    hold on 
    plot(SimTime1,3*sqrt(Pdiag1(:,i)),'-.r'); 
    plot(SimTime1,-3*sqrt(Pdiag1(:,i)),'-.r'); 
    grid on 
    xlim([0 4000]) 
    ylim([-5E-4 5E-4])  
    xlabel('Time (Sec)') 
    label=['\delta \beta ' num2str(i-3)]; 
    ylabel(label) 
  
end 
subplot(3,1,1) 
title('Bias Error for EKF') 
  
clear norm_p_u norm_p_e norm_bias_u norm_bias_e 
norm_p_u=zeros(m,1); 
norm_p_e=zeros(m,1); 
norm_bias_u=zeros(m,1); 
norm_bias_e=zeros(m,1); 
for i=1:m; 
norm_p_u(i,1)=norm(p_BNe_u1(i,:)); 
norm_p_e(i,1)=norm(2*p_BNe_e1(i,:)); 
norm_bias_u(i,1)=norm(bias_e_u1(i,:)); 
norm_bias_e(i,1)=norm(bias_e_e1(i,:)); 
end 
  
figure(5) 
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semilogy(SimTime1,norm_p_u) 
hold on 
semilogy(SimTime1,norm_p_e,'-.r') 
grid on 
title('Normalized EKF and UKF Attitude Errors') 
xlabel('Time (Sec)') 
ylabel('Attitude Errors') 
legend('Normalized UKF Generalized Rodriguez Parameter Errors', 
'Normalized EKF Generalized Rodriguez Parameter Errors') 
xlim([0 4000]) 
     
figure(6) 
semilogy(SimTime1,norm_bias_u) 
hold on 
semilogy(SimTime1,norm_bias_e,'-.r') 
grid on 
title('Normalized EKF and UKF Bias Errors') 
xlabel('Time (Sec)') 
ylabel('Normalized \beta Errors') 
legend('Normalized UKF Bias Errors', 'Normalized EKF Bias Errors') 
ylim([0 .01]) 
xlim([0 4000]) 
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